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ABSTRACT 

Defects, i.e. hot tears, macrosegragation, and pores, formed in metal castings are a 

result of stresses and strains in the solid-liquid mushy zone.  Numerical simulation of 

solidification of deforming dendrite crystal promises to improve insight into the 

mechanical behavior of mushy zones under an applied load.  The primary goal of this 

thesis is to develop numerical methodologies for performing solidification simulation of 

deforming dendrites.  Such simulation encounters difficulties associated with the 

interface dynamics due to phase change or interaction among the dendrites, and large 

visco-plastic deformation applied to them.  Phase-field simulation of dendritic 

solidification is promising for the treatment of the complex interface dynamics.  Free 

energy based formulation allows the model to incorporate bridging and wetting  

phenomena occurring at grain boundaries through an extra energy term which arises from 

a mismatch of the crystallographic orientation.  The particle method would be attractive 

to handle large inelastic deformation without suffering mesh entanglement.  In order to 

investigate the effect of solid deformations on the evolving microstructure, the material 

point method with elasto-visco-plasticity constitutive model is developed to couple to a 

phase-field model of solidification.  The changes in the crystallographic orientation of a 

growing dendrite crystal due to solid deformation are carefully accounted for through the 

coupling methodology.  The developed numerical framework is applicable to the 

simulation for single and multiple crystals, and is capable of handling complex 

morphological change.  The wide variety of validations and practical problems solved in 

this thesis demonstrates the capability of investigating deformation behavior of growing 

crystals. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Motivation 

Metal casting is a well-established manufacturing process to produce complexly 

shaped metalwares by utilizing solidification from liquid melt in a single operation.  A 

recognized disadvantage of the process is formation of defects.  Most of the defects are a 

result of solidification process.  Porosities and hot tears are considered to be some of the 

most severe defects and may preclude applying castings to metal products which require 

high reliability or integrity, for example a suspension arm of an automobile.  The main 

cause of the defect formation is a deformation in the mushy zone by various external 

loading during casting process, i.e. contact force applied by rolls in continuous casting 

and pressure casting, and a volume change associated with phase change [1].  Mechanical 

response and feeding of liquid melt in mushy zone influences the defect formation. 

Mushy zones are characterized by partially solidified regions, and the structure is 

intermediate between microstructure and grain-scale macrostructure.  Grain-scale 

macrostructure is a result of the following series of microstructure evolution.  (i) Solid 

seeds randomly created in the liquid melt freely and evolve their morphologies, i.e. 

equiaxed or columnar dendrite structures, until impingements on one another occur. (ii) A 

coherent network is formed among dendrite structures. The network can become 

interlocked, and it begins to have mechanical strength.  (iii) Liquid melt trapped inside 

the solid skeleton solidifies with the forming grain boundaries.  In terms of mechanical 

response, the morphology of the solid evolved in the process of (i) is significant because 

it strongly affects on interlocking property in the process of (ii).  A network of dendrites 

is interlocked at a relatively low solid fraction while a network of spheroidal or globular 

grains must have a higher solid fraction than dendritic network to have the same 

mechanical strength [2].  Deformation applied to the microstructure also has a significant 
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effect on the microstructure evolution.  Figure 1. 1 (a)-(b) shows snapshots of preliminary 

experiments examining deformation of dendrite arms in the mushy zone by applied load 

which were performed  at the University of Iowa’s solidification laboratory.  Two 

horizontally extended dendrite arms in succinonitril-3%water alloy are pushed in the 

horizontal direction.  As indicated by an arrow in Figure 1. 1 (b), a bridging of side 

branches is observed.  Complex phenomena taking place at the contact area, such as the 

formation and breakage of bridging, sliding motion among branches etc., would lead the 

microstructure change.  Pores are formed in the process of (iii).  Density change 

associated with phase change [3] or contraction/expansion of solid due to applied 

deformation [4] induces fluid flow to the part through a porous solid network.  A lack of 

feeding of liquid melt to the part is a main cause of the formation of pores.  Residual 

stress associated with rapid cooling or non-isothermal distribution causes dilatation of 

solid and leads a formation of hot tears.  Shear deformation in mush during continuous 

casting is said to be one of the causes of macrosegregation, whose formation is strongly 

dependent on a relative velocity of liquid with respect to solid [5].  The deformation in 

mushy zones is strongly related to the formation of defects from various aspects. 

Based on the above discussion, a numerical prediction of mushy zone deformation 

in the evolving microstructure scale should provide innovative insights to improve an 

existing casting process from the standpoint of the management of defect formation.  

Morphological change under applied deformation is one of the challenging aspects of the 

problem.  A formation of bridges among branches and coarsening grains are determined 

by interfacial energy associated with crystallographic orientation mismatch among them.  

An approach with energetic considerations is necessary.  Deformation of evolving 

microstructure is another challenging task.  A breakage of the bridges and fragments of 

dendrite arms are a result of deformation applied to the parts, and it, in turn, affects the 

microstructure change. The solid itself behaves as elasto-visco plastic material at high 

temperatures, and possibly causes large deformation.  A numerical method which handles 
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large deformation with evolving microstructure is essential.  State-of-art numerical 

methodology designed to simulate the complex coupling phenomena would cover the 

limitations of experimental investigation in terms of resolution of time and length scale. 

1.2 Literature Review 

A brief overview of experimental and numerical work regarding mush zone/semi-

solid deformation is described in this section. 

1.2.1 Experimental investigations of mushy zone/semi-

solid under deformation 

Flemings [2] performs a series of experiments on alloy semi-solids in order to 

investigate a wide variety of topics, i.e. crystallization, ripening, interdendritic flow, and 

solid motion etc.  One of the major experimental findings is a morphological change of 

the solid due to applied deformation.  Higher shear rate results in more spheroidal 

microstructure than dendritic microstructure as shown in Figure 1. 2.  This, in turn, 

affects on the mechanical strength of the material.  For instance, shear strength of a 

dendritic microstructure is three orders of magnitude larger than that of a spheroidal 

microstructure at the early stage of microstructure evolution, i.e. when the solid fraction 

is 0.4.  Contacts among crystals have an important role on generating shear stress against 

shear strain.   When the fraction of solid is less than 0.9, deformation of the solid is 

mainly caused by grain-boundary sliding. 

Recent advances in technology make it possible to visualize and analyze dynamic 

solidification processes in a microstructural scale.  Billia et al. [6] employ in-situ and real 

time investigations of solidification dynamics with X-ray radiography.  Dynamic 

morphological change of dendrites of aluminum alloy under the gravitational force is 

successfully captured.  One fascinating result of their work is a bending of secondary 

dendrite arm caused by two precipitating equiaxed dendrite crystals (indicated by 1and 2 

in Figure 1. 3).  Reinhart et al. [7] demonstrates a similar experiment to Billa’s work, and 
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showed that the stress caused by bending acting on the thin neck part where a secondary 

arm attaches to a primary arm is estimated by measuring bending angle.  They conclude 

that a sudden and irrecoverable rotation of the secondary dendrite arm is caused by 

yielding at the thin neck due to stress concentration.  Moreover, the mechanical response 

of the solid itself shows strain rate dependency (i.e. [8]). In-situ observations of the 

deformation behavior of a semi-solid Al-Cu alloy with the X-ray microtomography 

employed by Terzi et al. [9] show that the deformation in the semi-solid is highly 

inhomogeneous.   The inhomogeneity is an important characteristic of semi-solid material 

with an applied deformation and is due to a different mechanical response of solid and 

liquid phases.  Motion of liquid melt induced by solid contraction/expansion is also 

ascertained by the observation and a formation of pores is clearly shown to be a result of 

a lack of liquid feeding. 

As a summary, the experimental investigations mentioned in above indicate the 

following: 

(1) Mutual interaction between microstructure change and stress field through 

mechanical response of the solid network. 

(2) Mechanical response of the solid itself follows elasto-visco-plastic material law. 

(3) Fragmentation of dendrite arms arises from stress/strain localization associated with 

morphology of the solid structure. 

(4) Deformation of the solid phase affects the formation of pores through the formation 

of void space and an induction of fluid flow. 

Although the experimental facts listed above provide useful knowledge about the 

mushy zone/semi-solid under applied deformation, the measurement of various physical 

quantities, i.e. stress, strain, velocity, temperature etc., in a microscopic scale still have 

limitations.  Complete control of experimental conditions, i.e. a control of nucleation of 

multiple seeds, is nearly impossible.  Numerical methodology of the system can be 

essential to clarify the detailed mechanisms which explain the experimental results.  
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1.2.2 Numerical modeling of the mushy zone/semi-solid 

under deformation 

1.2.2.1 Averaging model approach 

Some numerical methodologies to investigate a mechanical response of mushy 

zone/semi-solid have been developed by researchers.  One approach is based on an 

averaging model.  Lalli [10] employs numerical analysis with averaged continuity and 

momentum equations based on a two phase model.  The mushy zone is modeled as a 

mixture of regularly allocated globular grains and fluid in a unit cell.  Mechanical 

equilibrium equations with a plasticity constitutive model are applied to compute the 

stress distribution within the solid phase while fluid flow is calculated based on D’Arcy’s 

law. A one-dimensional axisymmetric compression simulation provides liquid fraction 

and stress distribution to evaluate the severity of segregation within the material.  Monroe 

[11] introduces the effects of thermally induced strain and visco-plastic strain to the 

mechanical equilibrium equation for porous solids in order to investigate the deformation 

of casting material during an actual process.  The constitutive model used in his study 

(Cocks model) accounts for solid fraction, temperature dependency of material properties, 

strain rate, strain, and hardening effect, so the effect of coherency of the solid network is 

considered through solid fraction dependent mechanical response.  All model parameters 

are determined experimentally, and the model gives a good prediction of hot tear 

formation. 

Such models are inherently phenomenological because the characteristics of 

microstructure within a unit cell are averaged out.  To recover the characteristics, several 

model parameters such as solid fraction dependent constitutive behavior have to be 

experimentally specified, and thus the model itself is strongly problem dependent.   
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1.2.2.2 Deformation analysis of microstructure 

In the averaging model approach, the mechanical response depending on 

microstructure is consolidated to model parameters.  An attempt to avoid the 

phenomenological treatment and to consider the actual physics at the micro-scale 

structure has been made by modeling an actual microstructure.  The model developed by 

Phillion et al. [12] is composed of multiple grain structures with liquid and pores (three-

phase model) illustrated in Figure 1. 4.  The grains are generated by the Voronoi 

tessellation technique such that the solid fraction of the model corresponds to that 

obtained by experiments, thus the geometry of the model is arbitrarily defined.  Liquid is 

simply assumed to be a perfectly plastic material with very low yield stress.   A notable 

result of their FEM analysis is that strain localization in liquid degrades macroscopic 

mechanical properties, and the localization is strongly influenced by grain size and 

porosity.  This indicates that grain sliding is the possible cause of microstructure-

dependent mechanical response.  This fact also implies that a property of bridging and 

coarsening at the grain boundary is an influential factor of macroscopic mechanical 

response. 

The FEM model developed by Fuloria et al. [13] reproduces an actual three-

dimensional dendrite captured by X-ray microtomography.  The experimentally measured 

constitutive relation of Al-Cu alloys, which is a function of plastic strain, strain rate, 

temperature, flow stress, and solid fraction, is used in the model.  A columnar dendritic 

structure is compressed up to 5% macroscopic strain for different solid fractions.  Flow 

stress obtained from their simulation shows good correlation with experimental data.  

Some limitations of their  FEM analysis are reported.  Firstly, a numerical divergence 

associated with contact, i.e. interdendritic impingements, restricts a simulation of more 

than 5% compression.  Stress/strain localization should be expected within complicated 

dendritic structure even if the applied displacement to the dendritic structure is small with 
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respect to macroscopic scale.  A capability for handling large deformation and contact is 

required for a numerical methodology of solid deformation. 

Both methodologies are well developed to examine the stress-state in microscopic 

scale structure.  However, neither of them combine microstructure evolution due to phase 

change and relaxation process taking place at contact region among dendrites. 

1.2.2.3 Numerical analysis of microstructure evolution 

The solidification phenomenon is a so-called moving boundary problem and is 

inherently difficult to solve.  Limiting our interest to pure substances, the solidification 

phenomenon is governed by the following equations. 
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     ii vd    (1.2.3) 

The first equation is the heat conduction equation which is valid in bulk solid and 

liquid phases. The term θ=(T-Tm)/(Lf/cp) denotes the dimensionless temperature, and T, 

Tm, Lf and cp are temperature, melting point of planer interface, latent heat of fusion and 

specific heat under constant pressure, respectively. The term D is the thermal diffusivity 

which is assumed to be identical in both solid and liquid phases in this thesis.  The second 

equation is the Stefan condition.  Motion of the solid-liquid interface is expressed as 

energy conservation at the interface under phase transformation.  The term  vi denotes the 

normal component of the interfacial velocity and n is the direction normal to the interface.  

The subscripts S and L stand for solid and liquid phase, respectively.  The third equation 

is the Gibbs-Thomson effect which defines the equilibrium temperature of the solid-

liquid interface.  The temperature is shifted as a function of the mean curvature κ of the 
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interface and interfacial velocity.  The coefficients d(α)and β(α) are the capillary length 

and the kinetic coefficient, and are dependent on the crystallographic orientation α. 

Numerical methodology for the moving boundary problem is generally divided 

into two major categories.  One is called the fixed grid method, and another is the front 

tracking method [14].  The former method allows the interface to pass through fixed 

meshes whereas in the latter method computational grids follow the motion of the 

interface directly, i.e. by adapting grids to the interface.  In the fixed grid method, 

additional numerical treatments satisfy the interfacial boundary conditions exactly at the 

interface, i.e. eq.(1.2.2) and (1.2.3), are essential.  The front tracking method often 

sufferes from mesh entanglement due to large deformation and the complex topology of 

the interface.  In this thesis, the fixed grid method is adopted to compute the complex 

morphological change of dendritic structures. 

The fixed grid method is sub-categorized into the sharp interface method (SIM) 

and the diffuse interface method.  The interface is tracked as a sharp entity in the former 

method while the latter method treats the interface as steep but sufficiently smooth 

transition.  In the SIM, solid and liquid phases are completely separated by the interface, 

and the problem becomes a free boundary problem.  The interface tracking method, i.e. 

volume-of-fluid (VOF) method [15], and a method to impose interfacial boundary 

conditions exactly at the interface are necessary to find the location and the motion of the 

interface.  The level-set method [16] is regarded as a highly successful interface tracking 

method.  The interface is tracked as a sharp discontinuity throughout computation while 

re-initialization is necessary to pursue an accurate calculation result.  The ghost fluid 

method [17] makes it easy to impose interfacial boundary conditions.   However, an 

actual implementation of the interface tracking method and imposing interfacial 

conditions is not a trivial procedure. 
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1.2.2.3.1 Phase field simulation of solidification 

The phase-field method has been a popular computational method that has 

successfully been applied to various solidification problems, i.e. dendritic solidification 

of pure substance [18-19], and eutectic solidification [20], in the last decade as one of the 

diffuse interface methods.  The main feature of the method is an introduction of an order 

parameter ϕ which denotes the phase at given location and time, A phase of ϕ=-1 and ϕ=1 

refer the bulk liquid and solid phase, respectively.  The phase field varies smoothly from 

bulk solid to liquid within the diffuse interface, thus the phase is treated as “diffuse” 

rather than the “sharp” interface used in the usual sharp interface method.  A free energy 

model of the system is constructed as a thermodynamically consistent function of ϕ and θ  

[21].  The time evolution of the phase-field is determined by the time dependent 

Ginzburg-Landau (TDGL) type equation which ensures that the total free energy of the 

system decreases with time, and is solved in a single computational domain.  The 

interface is implicitly evolved without any special treatment, so tremendous efforts 

regarding to an interface tracking and assignment of interfacial conditions are avoided.  

This is the significant advantage of the phase-field method over the sharp interface 

method, and the method is chosen to simulate microstructure evolution in this thesis. 

1.2.2.3.2 Phase-field simulation of solidification with stress 

evolution 

Phase-field solidification simulation with the evolution of the stress field is 

employed by Uehara et al. [22].  Elastic strain energy and plastic dissipation energy are 

additionally considered to derive their governing equations.  Phase-field, temperature, 

and mechanical equilibrium equations with an elasto-plastic constitutive model are solved 

by finite difference and finite element methods.  Heat release due to plastic deformation, 

thermal stress, and phase transformation stress is included in their model.  Stress 

concentration around thin neck part and residual stress evolution around interdendritic 
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impingement region are computed as shown in Figure 1. 6.  Stress distribution depends 

on the morphology of the microstructure.  In their work, the simulation is performed in 

the confined computational domain, i.e. no displacement and traction boundary 

conditions are imposed on mechanical equilibrium equation.  Stress is only induced by 

volumetric contraction/expansion due to temperature change or phase transformation, so 

the effect of an applied load on evolving microstructure is not considered.  Furthermore, a 

bridging and a coarsening process at the interdendritic impingement region are not  

included. 

Powell et al. [23] combine the phase-field equation with a unified equation of 

motion for both liquid and solid phases in order to simulate fluid-structure interaction.  

Non-uniform solid motion is only limited in the range of elastic regime, and volumetric 

change of the solid is neglected.  Since the phase-field model should be extended to 

handle solidification phenomenon, a simulation of microstructure evolution with 

deforming solid phase is possible.  However, the constitutive model is not suitable for an 

actual metallic material in the elastic range and plastic flow in the large deformation 

range (the model assumes incompressibility of the material).  The authors note a 

possibility of an extension of the model to elasto-plastic and elasto-visco-plastic 

constitutive behaviors, but an actual methodology for an extension is not indicated. 

1.2.2.3.3. Phase-field solidification simulation of 

polycrystalline material 

As mentioned in the preceding section, a relaxation process, i.e. a bridging or a 

coarsening, at the interdendritic or grain impingement region, is an important factor on 

the resulting microstructure and the mechanical response against an applied load to the 

structure.  The process is dependent on interfacial energies associated with 

crystallographic orientation mismatch at the dendrite or grain impingement region.  The 

smallest unit of structure of metallic materials is a crystal lattice, and the structure 
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represents favorable sites for atoms which minimizes energy of the system.  Therefore, 

the crystallographic orientation is determined by the direction where an atom favorably 

binds to the existing structure, thus the direction of anisotropy in the phase-field model 

corresponds to the direction.  When two grains have different crystallographic 

orientations and lie next to each other, the status is unfavorable for the system in terms of 

energy.  Grain rotation, grain boundary migration, and the introduction of dislocation 

occur in order to minimize energy of the system.  Therefore a complex morphological 

change associated with bridging, a coarsening of grains, and the formation of a (dry or 

wetting) grain boundary is observed. 

A polycrystalline phase-field model which can treat grain boundary formation and 

the grain coarsening process is developed by Warren et al. [24].  An energy penalty due 

to orientation mismatch is introduced to their free energy function, and its form is 

designed such that a grain rotation and a grain boundary migration are possible.  Grain 

wetting is incorporated as a balance among solid-liquid surface energy and grain 

boundary energy.  The model needs some numerical treatments for an actual 

implementation, but an evolution of multiple crystals with the complex relaxation 

phenomena associated with grain boundary is successfully computed as shown in Figure 

1. 7. 

Although there are some other numerical models which can handle from a single 

dendrite growth to multiple grain formation as statistical mechanics based model, i.e. 

cellular automaton, this kind of method is less compatible in terms of coupling with a 

continuum based model, i.e. solid deformation analysis with FEM.  The length scale 

intended in molecular dynamics and phase-field crystal method ( i.e. [25]) is too small in 

terms of multiple grain scale.  In this sense, the choice of phase-field method should be 

feasible in order to perform the solidification simulation in a range of the length scale. 
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In summary, some research concerning numerical methods for mushy zone 

deformation with or without microstructure evolution is presented.   Points are listed in 

the following: 

(1) The averaging model requires empirically determined model parameters in order to 

consider characteristics of a microstructure whose length scale is smaller than the 

unit cell used in the model. 

(2) Deformation analyses with a model based on an actual microstructure have been 

performed by some researchers.  However, none of the models have treated 

microstructure changes due to phase change under the applied deformation.  A 

numerical issue associated with contact and large deformation should be kept in 

mind for a choice of numerical method. 

(3) Simulations of microstructure evolution under stress field evolution  

1.3 Scope of This Thesis 

This thesis addresses the deformation of dendrite structures based on micro-scale 

physics.  Situations where this research can be applied are inherent in a variety of casting 

processes.  These issues have received almost no research attention in the past as stated in 

the preceding section.  This thesis is aimed at obtaining fundamental knowledge of the 

mechanical behavior of dendritic microstructures in mushy zones under applied external 

loads through numerical investigation.  The scale focus of this thesis is from the 

microscopic scale where the solid-liquid interfaces can be directly resolved to the scale 

where solidification of clusters of dendrites is observed.  Therefore, this thesis is focused 

primarily on developing a direct numerical simulation method of microstructure 

evolution under externally applied deformation.  The thesis topic should be a first attempt 

to develop a physics-based model for deformation of the mushy zones with the 

consideration of the microstructure.  The methodology should advance the fundamental 
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understanding of mushy zone deformation and provide innovative insights to control the 

formation of defects in an existing casting process. 

In order to accomplish these goals, a suitable coupling methodology among 

“solidification”, “solid deformation with proper crystallographic orientation treatment”, 

and has to be developed.  The methodology should advance the fundamental 

understanding of mushy zone deformation and provide innovative insights to control the 

formation of defects. 

For solidification phenomenon, complex evolution of the microstructure has to be 

accurately tracked.  For this purpose, the development of a phase field model is pursued.  

Since the method is a potential tool to handle the simulation of grain boundary formation, 

the feature should consider the change of crystallographic orientation due to solid 

deformation. 

For solid deformation, localization of the deformation within the dendritic 

structure needs to be addressed.  In order to represent shear dependent material 

constitutive behavior against mechanical loading, an elasto-visco-plastic material model 

will be included.  A numerical method which has capability of handling large 

deformation should be applied to this aim. 

Specific targets of this thesis are the following: 

1 To develop a phase field model of dendritic solidification under externally applied 

loading with the appropriate crystallographic orientation treatement 

2 To develop a structural analysis model of the solid phase which has the capability of 

handling large deformations and elasto-visco-plastic material behavior  
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Figure 1. 1 Experiments of the dendrite deformation under an applied load; two 
horizontally extended dendrite arms in a succinonitrile-3% water alloy are 

pushed in the horizontal direction; (a) before deformation; (b) after 
deformation.  

 

Figure 1. 2 Morphological change of solid body under applied shear. 

Source: Flemings, M. Metall. Mater. Trans. 1991, 22B, 269-293 

(a) (b) 
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Figure 1. 3 A secondary arm bending due to two precipitating equiaxed dendrite crystals 
(indicated by 1 and 2). 

Source: Billa, B. et al. Trans. Indian Inst. Met. 2007, 60, 287-291 

 

 

Figure 1. 4 Plastic strain contour obtained by FEM analysis with three phase model. 

Source: Phillion, A.B. et al. Acta Mater. 2008, 56, 4328-4338 
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Figure 1. 5 Von Mises stress contour computed by FEM analysis with the model based on 
an actual dendritic microstructure captured by the X-ray microtomography. 

Source: Fuloria, D.; Lee, P.D. Acta Mater. 2009, 57, 5554-5562 

 

Figure 1. 6 A series of phase-field simulation of solidification coupled with stress/strain 
effect; (a) Phase-field and (b) Equivalent stress evolution 

Source: Uehara, T. et al. J. Cryst. Growth. 2008, 310, 1331-1336 
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Figure 1. 7 A series of phase-field evolution (indicated by each dendrite or grain shape) 
and an evolution of crystallographic orientation (indicated by colors) 

employed by polycrystalline phase-field model. 

 Source: Warren J. A. et al. Acta Mater. 2003,51,6035-6058 
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CHAPTER 2 

METHODOLOGIES 

Methodologies of numerical simulation of dendritic solidification with externally 

applied deformation are described in this section. 

2.1 Strategy and Assumptions 

As stated in the preceding introduction section, the major challenging aspects of 

dendritic solidification simulation with externally applied deformation are the following: 

(1) Choice of the numerical method for dendritic solidification simulation and 

deformation simulation of the solid structure. 

(2) Coupling methodology between the above two simulations with simplifications and 

assumptions. 

The above topics are discussed in the following subsections. 

2.1.1 Choice of numerical method 

2.1.1.1 Dendritic solidification simulation 

An evolution of the microstructure has to be correctly simulated by the methods 

presented in this thesis.  Specifically, dendritic solidification of a single crystal and 

multiple grain formation as a result of impingements of the single crystals are of interest.  

Based on the discussion in chapter 1, a phase-field simulation of solidification should be 

a suitable choice to compute from single to multiple crystal growth.  Thanks to the 

advantage of the phase-field method, tremendous work associated with interface tracking 

and imposing appropriate jump conditions at the interface are avoided.  Instead, 

parameters in the model equations of the phase-field method have to be determined such 

that the result exactly replicates the result obtained by the sharp interface model.  The 
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governing equations and determination procedure of the model parameters in the 

equations are presented in the later section. 

2.1.1.2 Deformation analysis of solid structure 

A complex stress distribution is expected within the structure due to (i) 

complicated solid morphology, (ii) interdendritic or grain impingements, and (iii) 

inelastic mechanical response of the solid material.  The major requirements of a 

numerical method for solid deformation analysis are the following: 

(1) Capability of handling large deformations and interdendritic/grain impingements. 

(2) Easiness of reconstruction of the solid structure model during the sequence of 

computation. 

(3) Inclusion of the elasto-visco-plasticity material model. 

The finite element method (FEM) is a well-developed numerical method, and has 

been extensively applied to many kinds of problems in solid mechanics.  However, the 

meshless method has also received considerable attention in the past decade as a  tool to 

solve PDEs.  Since the computation in the method relies on variables for material points 

as a representation of a solid body, the method naturally avoids mesh entanglement 

caused by the severe deformation observed in the usual mesh based FEM.  Furthermore, 

the meshless method eliminates the cumbersome mesh construction process required in 

FEM which is basically due to rigid mesh connectivity.  The meshless method has an 

attractive capability of handling repetitive solid model updates during a series of 

computations, and should be a suitable numerical method in terms of requirements (1)-(3) 

listed above. 

Several kinds of meshless methods have been developed by researchers.  The 

SPH (Smoothed Particle Hydrodynamics) method [26], the mesh-free Galerkin method 

[27], the vortex method [28], and the PIC (Particle-In-Cell) method [29] are some 

examples.  In this thesis, the material point method (MPM) [30] is selected as a numerical 
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method for the solid deformation analysis.  The MPM is originated from the PIC method, 

and has been applied to various problems such as deformation of composite material [31-

32], compaction [33], fluid-structure interaction [34], fracture mechanics [35], 

geomechanics [36] etc.  The main feature of the method is a usage of both Lagrangian 

and Eulerian descriptions.  The solid body is represented by a collection of material 

points, and all of the information about the material properties and deformation history is 

tracked and held on the points (Lagrangian description).  The equation of motion is 

solved by the aid of background grids which are typically fixed in space by mapping 

variables from the material points to the grid points. The grids are used as a 

computational scratch pad (Eulerian description).  The method is free from the problem 

of mesh distortion while the deformation history is naturally delivered by material points.  

An insertion or relocation of material points should be relatively easier than a mesh based 

FEM.  Mass and momentum conservation must be satisfied in the process.  The use of 

Eulerian background cells also provides a better compatibility in terms of coupling with 

the other field variables which are governed by the Eulerian based equation as phase-field 

equation in this thesis.   

At the initial stage of this research, the applicability of Lagrangian FEM 

(commercial FEM program ABAQUS and ANSYS) to our simulation methodology was 

examined.  Nowadays, highly advanced mesh modification options, i.e. the arbitrary 

Lagrangian Eulerian method [37] and the adaptive meshing method [38], are available. 

These methods were applied to update our solid model associated with morphology 

change due to solidification.  However, the modified solid model was typically composed 

of extremely fine elements due to the complexity of the morphology that occurs if the 

meshing criteria of commercial software are used, and often caused the termination of 

further computation.  In order to specify own way of mesh modification, all meshing 

criteria should be implemented through the specific subroutines which are available in 

those software, which is a tremendous amout of work.  Furthermore, inelastic material 
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behavior made the simulation more difficult.  If a solid model is updated, the historical 

variables at Gaussian points on the updated model need to be specified as initial 

conditions for the further deformation analysis.  In commercial software, a low order 

mapping method is used for the purpose, and iterative computation is performed such that 

the new stress state becomes consistent with the stress state before the model update.  An 

updated model often was not available due to a convergence issue in the new stress state 

calculation process.  As mentioned in chapter 1, contact analysis also presents difficulties.  

In the usual FEM analysis, the master and slave elements which represent a pair of 

contact elements should be defined for the contact analysis.  Every time the solid model 

is updated, the elements must be found and determined automatically, and the code 

development is not trivial process.  In terms of the solid model update and the stress 

determination process associated with the model update, the development of our own 

MPM code is decided.  As we will discuss later, the calculation code is based on an 

explicit scheme, and no-slip contact is automatically satisfied.  Those are also 

determining factors to select the MPM as a numerical method of solid deformation 

analysis.  

2.1.2 Solution strategy and assumptions 

Figure 2. 1 (a)-(b) show diagrams of the interactions among “phase-field”, 

“temperature”, and “solid stress field”.  Figure 2. 1 (a) describes the case of full coupling 

among the fields while Figure 2. 1 (b) denotes the simplified coupling case applied to this 

thesis.  Assumptions for the simplified coupling are described in the following 

subsections. 

2.1.2.1 Phase-field – temperature field coupling 

In the phase-field method, the free energy function of the system of concern is 

constructed.  Basically, the free energy includes the information about two stable phases, 

i.e. solid and liquid in this thesis, described by the double-well potential and excess 



www.manaraa.com

22 
 

 

2
2
 

surface energy.  Since a stable phase is dependent on temperature, i.e. liquid phase is 

more stable than solid phase above melting point, the effect is considered through the 

introduction of a temperature dependent term for free energy (temperature  phase-field 

coupling).   

Throughout this thesis, the densities of both solid and liquid phases are assumed 

to be equivalent.  Under this assumption, a rate change of the phase field at an arbitrary 

spatial location denotes the rate change of solid mass created from liquid melt.  As 

mentioned in chapter 1, the creation of solid mass due to phase change is accompanied by 

latent heat release.  A source term for latent heat release is introduced to heat equation 

(phase-field  temperature coupling). 

2.1.2.2 Phase-field – solid stress field coupling 

Stress applied to the system of interest might induce phase transformation.  

However, it is mainly observed in solid-solid phase transformation, so the effect can be 

neglected.  Instead, a change of solid shape is reflected in the solid model used in 

deformation analysis (phase-field  solid stress field coupling). 

Solid stress may caused by phase change.  The stress is induced by 

dilatation/contraction due to density change.  As mentioned in the previous section, no 

density change due to phase change is assumed, and the effect is neglected.  Alternatively, 

solid motion due to applied deformation is included as the advection velocity solidv


 in the 

phase-field equation (solid stress field  phase-field coupling). 

2.1.2.3 Temperature field – solid stress field 

Thermal stress is induced by thermal expansion/contraction associated with a 

change of material properties due to temperature change or non-uniform temperature 

distribution within the solid structure.  As pointed out by Dantzig and Rappaz [1], 

thermal stress is the major cause of hot tearing, but the effect is remarkable when the 

system is under rapid cooling, i.e. cooling from melting temperature to room temperature.  
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In this thesis, the solid phase is assumed to be held around the melting temperature and 

the thermal stress should be negligible.  Heat generation associated with plastic 

deformation (dissipation) is not included this thesis.  Instead, solid deformation is 

introduced as the advection velocity solidv


 in the heat equation (solid stress field  

phase-field coupling). 

2.2 Equations 

Equations used in dendritic solidification simulation with applied deformation are 

presented in the following subsections 

2.2.1 Phase-field dendritic solidification simulation 

Dendritic solidification of a pure substance is of interest in this thesis.  The 

following non-conserved Allen-Cahn model given by Karma and Rappel [19] is solved as 

an evolution equation of phase-field ϕ. 
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 (2.2.1) 

 

where η is a relaxation time (~10
-10

[sec]), and W is an interface thickness.   The 

term F(ϕ,λθ)=f(ϕ)+ λθg(ϕ) denotes the phenomenological bulk free energy.  As 

mentioned in the previous section, “temperature θ  phase-field ϕ” coupling is 

considered by the θg(ϕ) term with a coupling parameter λ.  A double-well potential  

f(ϕ)=- ϕ
2
/2+ ϕ

4
/4 is a typical choice to have two stable phases at ϕ=1 (solid) and ϕ=-1 

(liquid), and an odd function g(ϕ)= ϕ-2 ϕ
3
/3+ ϕ

5
/5 is specified to represent a stable phase 

at given temperature θ.  Anisotropy has an important role on the determination of the 

dendritic structure, and it reflects preferable growth directions.  The effect is generally 

introduced through direction dependent parameters η(θ) and W(θ) in case no orientation 
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change during solidification is assumed. The term θ denotes the angle between the 

interface normal n and the fixed x-coordinate axis defined by 

 









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x

y




 1tan  (2.2.2) 

where ϕx=∂ϕ/∂x and ϕy=∂ϕ/∂y. The term vext represents the external field velocity 

given by 

   liquidsolidext vvv


  1  (2.2.3) 

The velocity is defined by the phasic average of the solid vsolid and the liquid 

velocity vliquid through a fraction of solid ψ=(1+ϕ)/2.  Thus, the motion of phase-field is 

considered to be convection due to external field velocity. 

2.2.2 Heat equation 

The evolution of the dimensionless temperature field is described by the 

following heat conduction equation. 

dt

d
Dv

t
ext






2

12 


 
 (2.2.4) 

The latent heat release at the solidification front is introduced through a source 

term as a function of rate change of ϕ.  A factor of 1/2 on the rate change of phase-field 

term of the equation is for normalization (range of phase-field is -1≤ϕ≤1).  Convection by 

an external field velocity is also considered in the equation.  

In order to have consistency between the phase-field model and the sharp 

interface model, solutions obtained by both models should be equivalent.  The way to 

maintain the consistency in the phase-field model is called the thin-interface analysis [19] 

and is adopted in this thesis.  The analysis defines relationships among model parameters 

appearing in eq.(2.2.1) and (2.2.4), and the details of the parameter determination will be 

presented in the later section. 
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2.2.3 Solid deformation 

Phase-field simulation is classified as a numerical model of meso-scale 

phenomena.  In the micro-scale, plasticity is characterized by the rearrangement of atoms, 

i.e. dislocation, sliding, and events taking place at grain boundary.  The phenomena are 

numerically investigated by atomic scale analysis, i.e. molecular dynamics.  However, the 

scalability of the method is not applicable to the scale of interest in this thesis due to its 

extensive computational cost, thus we limit our scope of solid deformation analysis in the 

range of continuum mechanics. 

Under the above assumption, the equation of motion for solid structure can be 

written in the following form. 

 b
dt

vd solid


  σ  (2.2.5) 

Here ρ is the density, vsolid is again the velocity of solid phase, σ is the Cauchy 

stress tensor, and b is a body force vector.  The equation is solved by the material point 

method (MPM) and its discritization and numerical procedure will be presented in a later 

section. 

2.2.3.1 Constitutive equation 

In order to solve eq.(2.2.5), a relationship between stress and strain (constitutive 

relation) is necessary.  As pointed out in chapter 1, a consideration of non-linear 

mechanical response, i.e. visco-plasticity, is essential, so a rate form of the constitutive 

relation should be suitable.    As commonly done, the total strain ε is decomposed into 

elastic ε
e
 and plastic part ε

p
. 

 
dt

d

dt

d

dt

d p

ij

e

ijij 
  (2.2.6) 

We also assume that stress is generated only by the elastic part of the strain. 
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dt

d

dt

d eε
C

σ
0 :  (2.2.7) 

where C0 is the fourth order elasticity tensor.  A relation between strain and 

displacement is also needed to compute eq.(2.2.5).  Generally, the strain rate is defined 

by a rate of deformation tensor. 

   T

solidsolid vv
dt

d 


2

1ε
 (2.2.8) 

In order to describe the mechanical behavior of elasto-inelastic materials, the 

following pure elastic, elasto-perfectly plastic, and elasto-perfectly-visco-plastic material 

response are numerically implemented.  

2.2.3.1.1 Elastic response 

The linear-elastic material response can be represented by the following equation 

(tensor notation). 
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where E and ν are Young’s modulus and Poisson’s ratio, respectively.  The two 

dimensional plane strain condition is assumed throughout this thesis, i.e. ε33=ε13=ε23=0.  

This condition gives us the relation ζ13=ζ23=0, ζ33=ν(ζ11+ζ22).  Using these relations, the 

resulting constitutive equation of linear-elastic material in vector-matrix representation is 

given by 

 
 

  

 
 

    


























































12

22

11

12

22

11

212/2100

011/

01/1

211

1






















E

 (2.2.10) 

The constitutive relation is adopted to compute stresses for the inelastic material 

model. 
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2.2.3.1.2 Elasto-perfectly plastic response 

Since the development of a material model for a specific material is not the 

primary objective of this thesis, a simple elasto-perfectly plasticity material model is 

assumed in some simulations. The von Mises yield criterion with the associative flow 

rule which is often used for general metallic material is introduced for inelastic material 

behavior.  Since the material is assumed to be held around melting temperature, the 

assumption of no hardening effects (both isotropic and kinematic) should be justified. 

The von Mises yielding function fY is represented by 

   0
3

2
 YijijijY ssf   (2.2.11) 

where sij is the deviatoric part of the Cauchy stress, and ζY is the yield stress.  

Plastic strain 
pε  is evolved by the following associative flow rule with a plastic 

multiplier dλ. 
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p

ij

s

s
d

f
d

dt

d











  (2.2.12) 

where dλ is a plastic multiplier.  Stress is integrated by eq.(2.2.7) while satisfying 

eq.(2.2.11).  The process is performed numerically by the radial return mapping method 

[39] which requires a single operation every single time step and is efficient in terms 

computational time (see appendix B for details of the numerical procedure). 

2.2.3.1.3 Elasto-perfectly-visco-plastic response 

Actual metallic materials show viscous response against imposed loading at high 

temperatures which means that the flow stress (dynamic yielding stress) is dependent on 

the rate of deformation.  In order to incorporate the material behavior, a Perzyna type 

model [40] with classical J2 associative flow rule is introduced in this thesis.  The 

assumption of  no hardening effect is also used for the same reason in the preceding 

section. 
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The von Mises yielding function is introduced as a loading function. 

  
YijijijY ssf 

3

2
  (2.2.13) 

An evolution of visco-plastic strain follows the associative flow law as 
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where γ is a consistency parameter defined by 

 
 

visc

ijYf




   (2.2.15) 

ηvisc is a viscosity coefficient which determines the decay time of the viscous 

response.  <•>  denotes the Macaulay brackets, i.e. <x>=(x+|x|)/2, so that the consistency 

parameter is activated when f≥0.  The Perzyna type model allows the state of  f>0 

temporarily to have a strain rate dependent yield stress.  Considering the above loading 

function and flow law, stress integration is performed by the radial return mapping 

method [39] the same way as the preceding purely plasticity model.  Details of the 

numerical procedure are described in appendix B. 

2.3 Fractional Step Method 

Eq.(2.2.1) and (2.2.4) include convection terms due to the external velocity field.  

If the advection terms are absent, solution methodologies for stationary dendrite growth 

(i.e. [19]) are available.  As a solution strategy for the equations, the fractional step or the 

operator split method (see, i.e. [37]) would be the suitable choice utilizing the existing 

solution methodologies. 

 Eq.(2.2.1) and (2.2.4) can be rewritten as the following simplified form. 

 Sa
a





extv

t


 (2.3.1) 



www.manaraa.com

29 
 

 

2
9
 

where a=(ϕ, θ) and S=(Sϕ, Sθ) represents R.H.S. of eq.(2.2.1) and (2.2.4).  The 

equation is divided into two parts, i.e. “non-advection part” and “advection part”, in the 

fractional step method. 

 S
a






t
 (2.3.2) 

 0*
*





a

a
extv

t


 (2.3.3) 

In these equations, a variable a
n
 at time level n is advanced to a

*
 at fictitious time 

level n*.  As mentioned above, existing numerical methodologies can be applied to solve 

this step.  Next, the variable a
* 
is advected by vext, and a

n+1
 at time level n+1 is given by 

the second equation. 

The time scale of the solidification process and the time scale of the solid 

deformation or fluid motion are inherently different.  By splitting the governing equation 

into two subsets, i.e. eq.(2.3.2) and (2.3.3), a different time stepping size can be assigned 

to each equation.  The ability to assign different stepping sizes is the main advantage of 

the fractional step method.  In order to achieve an efficient computation, the numerical 

methodology is adopted in this thesis. 

2.3.1 Numerical scheme of advection equation 

A numerical scheme to solve the advection equation (2.3.3) is necessary for the 

fractional step method.  Benson [37] points out that the advection scheme affects the 

overall accuracy of the method.  According to Sun and Beckermann [41], a solution of 

the phase-field equation is quite sensitive to its profile, thus an advection scheme with a 

sufficient accuracy is essential to maintain the profile correctly during the advection. 

The CIP (Cubic Interpolated Pseudo-particle or Constrained Interpolation Profile) 

method [42] is one of the advection schemes.  The main characteristic of the CIP method 

is the use of both the variable and its spatial derivative to construct a piece-wise third 
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order polynomial within two neighbor nodes in one-dimensional case.  A solution of the 

advection equation is determined to be a value at an upstream departure point which is 

found by tracing back along the polynomial (semi-Lagrangian way).  The CIP method 

provides third order accuracy in space, which is the same order of accuracy as the CENO 

scheme used by Sun and Beckermann [41].  Thus, the CIP method is adopted as an 

advection scheme in this thesis.  Details of the method and its implementation are 

presented in appendix A. 

2.3.2 Validation: diagonal translation of a circle 

Diagonal translation of a circle [41] is selected as a validation problem for an 

advection of the phase-field profile.  A square computational domain whose side length is 

1.0 is defined as illustrated in Figure 2. 2.  The left bottom corner is set to be the origin of 

the coordinate system.  Initially, a circle whose radius is 0.15 is located at (0.25, 0.25), 

and a phase-field profile is assigned to the circle (ϕ=1 is inside and ϕ=-1 is outside the 

circle).  The phase-field profile is defined by the following hyperbolic tangent kernel 

function which is the steady state solution of phase-field equation (2.2.1). 

 









W

n

2
tanh  (2.3.4) 

where n stands for a signed distance, i.e. n≥0 and n<0 inside and outside the circle, 

respectively. Meshes of 80x80 and 160x160 are examined in this study.  The interface 

thickness W is set to be W=2∆x and W=4∆x for 80x80 and 160x160 meshes, respectively.  

The external velocity field extv


=(1.0,1.0) is imposed everywhere in the calculation 

domain until the center of the circle reaches at (0.75,0.75), then the circle is returned to 

the initial location by inverting the velocity field simultaneously. 

Figure 2. 3 shows the phase field contours at initial state (left panels), half 

translation (center panels) and full translation (right panels) for (a) 80x80 and (b) 

160x160 meshes.  Circles travel diagonally while maintaining their outline within a 
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computational domain. The phase-field profiles along a horizontal center line passing 

through the center of the circle are illustrated in Figure 2. 4.  No significant differences 

among the profiles are observed for both mesh configurations.  The computed ϕ=0 

contours are plotted in Figure 2. 5.  The circular outline at full translation overlaps with 

the one at the initial state for both mesh configurations.  Quantitative comparison of the 

ϕ=0 circular outlines is performed in the following way. The L1 and L2 error norms are 

defined as the error between the measured radius of the circle Ri based on the calculation 

results (bisection method is used to compute ϕ=0 contours) and the exact radius of the 

circle Ri
ex

  (Ri
ex

 =0.15 in this validation problem). 
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 Figure 2. 6 shows the calculated L1, L2 norms with respect to the mesh size ∆x.  

Simulations are performed with a constant interface thickness of W=0.01 and four 

different mesh sizes.  The approximated curves are also presented in the figure, and the 

curves indicate that our calculation code shows 2.5-3
rd

 order of accuracy.  The order of 

accuracy is comparable to order of accuracy presented by Sun and Beckermann [41] 

(third-order CENO scheme).  Therefore, the CIP method is a feasible choice for phase-

field advection. 

Additional simulations with different interface thickness W are performed. 

Meshes of size 160x160 are used, and the spatial increment ∆x is fixed (a side length of 

the domain set to be unity). The L1, L2 norms with respect to ∆x’=∆x/W are shown in 

Figure 2. 7.  As ∆x’ increases, the error norms also increases.  The sharper interface gives 

the larger error.  As we will describe in detail later, the interface thickness W is only a 

free parameter in the phase-field equation.  The value of W should be carefully 

determined if phase-field equation is combined with advection scheme.  The value 
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∆x’=∆x/W=0.4 is chosen in this thesis, so that the error associated with the combination is 

expected to be less than 0.1%. 

2.4 Phase-Field Method 

2.4.1 Parameter determination 

Numerical parameters in the phase-field equation (2.2.1) and heat equation (2.2.4) 

need to be specified to recover solutions of the sharp interface dynamics eq.(1.2.1)-

(1.2.3).  The thin-interface asymptotic analysis [19] describes relationships among the 

parameters.  Asymptotic analysis (or perturbation method) is performed for the inner 

(inside the diffuse interface) and outer region (outside the diffuse interface) while 

assuming the Peclet number Pe=Wvi/D to be a small parameter.  By matching up the 

inner and outer solutions, the relationships are constructed.  Although the mathematical 

details are not described here (see [19] for the details), the interfacial temperature is 

represented by the following form. 

 ii va
D

W

W

aWa








 2

2
11

2
1










  (2.4.1) 

where a1=0.8839 and a2=0.6267 are constants obtained from the solvability 

integral for the given functional forms of  f(ϕ)=- ϕ
2
/2+ ϕ

4
/4 and g(ϕ)= ϕ-2 ϕ

3
/3+ ϕ

5
/5.  

Eq.(2.4.1) should recover the solution by sharp interface dynamics, i.e. eq.(1.2.3), then it 

gives the following relations. 

 







 2

2

11 1, a
D

W

W

aWa
d











 (2.4.2) 

Since rapid cooling is not assumed in this thesis, the kinetic term is negligible, i.e. 

β=0.  Finally, the following relations are obtained among parameters. 

 
dD

Waa

d

Wa 3

211 ,    (2.4.3) 
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where λ, η, and W are specified by eq.(2.4.3) because d and D are material 

properties.  Generally, the interface thickness W is assumed to be a free parameter, and λ 

and η are the values to be determined.  As long as Peclet number Pe is kept small, the 

phase-field model recovers the solution using the sharp interface model. 

2.4.2 Adding anisotropy 

Anisotropy plays a crucial role on dendritic pattern selection, so the effect should 

be introduced to the phase-field model.  Generally, the anisotropy is incorporated by 

allowing η and W to depend on the local normal vector to the interface.  In other words, 

the effect is included through surface energy and kinetics.  The cubic or four-fold 

anisotropy, i.e. ξ(θ)=1+ε0cos4θ, is introduced to η and W  such that η(θ)= η0ξ
2
  and 

W(θ)=W0ξ.  The term θ represents the angle between the x-axis of the fixed coordinate 

system and the local normal vector to the interface. 

 












 

x

y




 1tan  (2.4.4) 

where ϕx=∂ϕ/∂x and ϕy=∂ϕ/∂y.  In the above definition, a characteristic interface 

thickness W0 and a time scale η0 is introduced.  In the actual computation, eq.(2.2.1) is 

nondimensionalized by the scales, .i.e.  0W  and t’=t/η0.  Using the scaled variables, 

the dimensionless form of eq.(2.2.1) is given by 
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2.4.3 Change of crystallographic orientation due to solid 

deformation 

Anisotropy is introduced to phase-field model depending on the angle θ defined 

by eq.(2.4.4).  In the definition of θ, the angle is measured from a reference frame which 

is set to be the fixed x-coordinate axis in space.  The phase-field simulation is performed 

under fixed Eulerian grids, thus it is a suitable definition.  In the case where there is no 

solid deformation, the crystallographic orientation and the x-axis always correspond to 

each other during the simulation, i.e. Figure 2. 8 (a).  However, since the crystallographic 

orientation reflects the crystal lattice structure of the solid phase, deformation imposed on 

the solid phase would cause a variation of the orientation within the solid structure. The  

x-axis and the orientation do not necessarily coincide with each other in that case, and the 

preferable growth direction should be changed by the change of orientation (Figure 2. 8 

(b)). 

One way to include the effect of the orientation change in phase-field model is by 

the introduction of an additional parameter α which represents an angle between the fixed 

x-axis and the crystallographic orientation as shown in Figure 2. 8 (b).  By the 

introduction of α, the anisotropy should be determined based on an angle (θ-α).  

Modifications of W(θ)W(θ-α) and η(θ)η(θ-α) would be necessary.  Due to the 

modifications, the following changes are  required for θx and θy. 
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 (2.4.6) 

The driving force of the orientation change is a rotation caused by solid 

deformation (translation does not affect on the change).  The evolution of the orientation 

can be given by the following equation. 
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 (2.4.7) 

The notation vsolid=(usolid, vsolid) is used here.  Eq.(2.4.7) is of the same form as 

eq.(2.3.1), so that the fractional step method is also used to solve it. 

As mentioned above, the crystallographic orientation is only meaningful in solid 

crystal, so the orientation cannot be defined in the liquid phase, i.e. ϕ<0.  However, the 

treatment of the liquit phase may cause some troubles in the actual numerical 

implementation because liquid part which will become the solid phase should have the 

same orientation as the solid into which the liquid part will be incorporated (the solid 

closest to the liquid part).  Let us consider the following situation in the phase-field 

simulation.  As shown in Figure 2. 9, a certain nodal point of liquid phase (ϕ<0) is going 

to become solid phase (ϕ≥0) within a single computational time step.  If there is no 

numerical treatment, the nodal point does not have any crystallographic orientation α 

when the phase-field equation (2.4.5) is solved because vsolid in eq.(2.4.7) is only defined 

in the solid phase.  The nodal point may evolve in the wrong direction.  In order to avoid 

the situation, some numerical treatment which assigns the same crystallographic 

orientation as the closest solid phase to the nodal point should be constructed and 

implemented in the phase-field model. 

2.4.3.1 Numerical method of extending field variables 

One possible way to achieve the treatment is the extension of the crystallographic 

orientation defined only in the solid phase to the liquid phase.  Since the phase-field 

varies only across the interface, a unit normal to the interface is easily defined to be 

 







n


 (2.4.8) 
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The vector points from the liquid to the solid phase.  If the orientation at the 

interface is extended along the direction of the unit normal, the liquid phase should have 

the same orientation as the closest solid.  The process would be numerically implemented 

with a PDE base extrapolation method [43].  A basic equation of the extrapolation is the 

following. 

 0








n

p


 (2.4.9) 

where ηp is a pseudo time which is defined only for the numerical purpose.  The 

equation is the same form as the advection equation, i.e. eq.(2.3.3).  Since -n indicates the 

direction from solid to liquid, the equation leads an advection from the solid to the liquid 

phase.  If the advection velocity is set to be zero in the solid phase, i.e. ϕ≥0, the 

crystallographic orientation α at the interface is extended to the liquid phase.  The 

equation (2.4.9) is solved until a steady state is established by setting criterion with some 

tolerance.  For instance, the following residual is defined with α at kth and k+1th iteration 

(iteration of the pseudo time step). 

 
kks   1Re  (2.4.10) 

In this thesis, a tolerance TOL=1.0e-6 is used.  The CIP method is again used to 

solve the equation.  In the steady state, i.e. ηp∞, eq.(2.4.9) gives 

 0 n


 (2.4.11) 

The equation denotes that α is kept constant along the normal direction to the 

interface. The minimum distance between some liquid part and its nearest neighbor solid 

is found by tracing the normal direction to the interface.  The equation ensures that liquid 

phase has α of the nearest neighbor solid.  Extension of α by eq.(2.4.9) in the order of the 

diffuse interface thickness is sufficient.  The equation is only solved within a narrow 

band whose width is 6Δx (comparable to the diffuse interface thickness) while using a 
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flag which distinguishes the inside and outside of the diffuse interface for efficient 

computation. 

In this thesis, the velocity of the liquid phase vliquid in eq.(2.2.3) is not computed.  

However, vliquid has to be estimated in the liquid phase to advect ϕ, θ, and α with vext. 

Otherwise a jump in velocity would be formed at the interface, and it would cause some 

numerical instability.  As a first approximation, the velocity of the solid phase is  

extended to the liquid phase in this thesis.  The numerical procedure is simply performed 

with a replacement of αvext in eq.(2.4.9).  The profile of dimensionless temperature θ is 

more diffused than ϕ and α (the order of several times of diffuse interface thickness).  

Therefore, the velocity field should be extended beyond the interface thickness of the 

phase-field.  From the definition of normal vector to the interface in eq.(2.4.8), the vector 

cannot be defined in the bulk phases, i.e. 0 , so some numerical procedure is needed 

to have the normal vector beyond the diffuse interface thickness for solving eq.(2.4.9). 

The PDE base re-initialization scheme[16] is utilized for this purpose.  From the steady 

state solution of phase-field equation, the singed distance from the interface n is 

represented by (inverse of eq.(2.3.4)) 

 

















1

1
ln

2

2W
n  (2.4.11) 

where n is only defined within the diffuse interface.  Re-initialization is 

performed by the following PDE [16]. 

    01 



nnS

n

p
 (2.4.12) 

where ηp is again a pseudo time.  The following function is adopted for S(n). 

  
 222 xnn

n
nS



  (2.4.13) 

At the steady state, eq.(2.4.12) is reduced to 
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 1n  (2.4.14) 

Then, n recovers the role of a signed distance function over the computational 

domain.  Eq.(2.4.12) is solved by CIP method.  The details of the numerical procedure 

are presented in appendix A. 

The numerical methodology to consider the change of crystallographic orientation 

due to solid deformation described in this section is only applicable when the coupling 

between α and ϕ is negligible in terms of free energy.  As mentioned in the preceding 

section, phenomena associated with grain impingements or grain boundary, i.e. bridging, 

and coarsening etc. are dependent on the state of free energies of the system.  A mismatch 

of crystallographic orientation at the grain boundary acts as an energy penalty because 

disordered structure, i.e. dislocation, is formed at the region, consuming additional energy.  

This indicates that the free energy should be in the form of F(ϕ,θ,  ), and includes 

coupling terms between ϕ and  .  This results additional terms related to δF(ϕ,θ,

 )/δϕ and  δF(ϕ,θ,  )/δα in the evolution equation of ϕ and α, respectively.  A 

polycrystalline phase-field model [24] incorporates the effect of the orientation mismatch 

on the free energy, but the simulation of the model is computationally more expensive.  

For the dendrite growth of single crystal, the orientation mismatch would not be a 

significant contribution to the system.  Thus, simulations with the  numerical 

methodology presented above will be presented in chapter 3 as the limiting case.  In 

chapter 4, the polycrystalline phase-field model will be introduced to perform multi grain 

growth with forming grain boundaries.  

2.4.3.2 Validation of the field variable extension: diagonal 

translation of a circle with extended velocity field 

The methodology of field variable extension developed in the last section is 

examined in this section.  Again, a diagonal translation of a circle is selected as the 

validation problem.  Identical geometrical settings for the calculation domain and the 
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circle from the preceding test problem are used with 81x81 meshes.  The interface 

thickness is set to be W=2∆x in this test problem. 

At each time step, (i) the velocity field is assigned only inside the circle at the 

beginning of every time step as shown in the lower left panel of Figure 2. 10. (ii)The 

phase-field ϕ is converted to the signed distance function n by eq.(2.4.11) within the 

diffuse interface region. (iii) n is extended to the whole computational domain using the 

re-initialization scheme given by eq.(2.4.12) as illustrated in the upper central panel of 

Figure 2. 10. (iv) The velocity field defined in (i) is extended outward the circle by 

eq.(2.4.9). (v) The circle with the phase-field profile is translated by the extended 

velocity field shown in the lower center and lower right panels of Figure 2. 10.  As before, 

the velocity field  0.1,0.1extv


 is assigned until the circle reaches at (0.75,0.75) and it is 

inverted instantaneously. 

Figure 2. 11 the left panel shows the computed ϕ=0contours.  The circle at full 

translation corresponds well with that at the initial state.  The phase-field profile along a 

horizontal centerline in the right panel of Figure 2. 11 also shows that the profile at the 

full translation is well maintained for one complete translation. The computed error 

norms determined by eq.(2.3.5) are L1=3.1E-3 and L2=3.3E-4.  Based on the result, the 

proposed field variable extension scheme is successfully implemented and works 

correctly.  The scheme should be applicable to actual numerical problems. 

2.4.3.4 Validation of phase-field simulation of dendritic 

solidification under imposed external velocity 

In addition to the numerical methodologies of the advection scheme and the field 

variable extension, an evolution of the dendritic microstructure is included in this thesis.  

The phase-field equation (2.4.5), the heat equation (2.2.3) and the evolution equation of 

crystallographic orientation (2.4.7) are solved under a given velocity field.  The 

numerical results are compared with exact solutions. 
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2.4.3.4.1 Pure rotational velocity field 

Dendrite growth under a rotational velocity field is examined in this section.  A 

rectangular computational domain whose size is 641x1281 nodal points is used, and a 

circular solid seed is initially allocated at the center of the domain (ϕ=1 and θ=0 are 

specified inside the seed) as shown in Figure 2. 12.  The dimensionless undercooling 

Δ=0.55 is set to liquid phase at the initial temperature and Δx/W=Δy/W=0.4 is used for 

spacing in x and y direction.  Symmetric conditions are imposed on the left and the right 

walls while periodic conditions are assigned to the upper and the lower walls.  All of the 

computational settings are specified in same manner as the phase-field simulation 

performed by Tong et al. [44] so that our numerical results can be compared with theirs.  

The rotation velocity is set to be π/40000 [rad/step].  An advection equation with 

rotational velocity is solved every 50 steps of phase-field simulation. 

First, a series of simulations with parameters indicated in Table 2. 1 are 

performed to examine tip velocities.  In the same table, the tip velocities obtained by the 

current study, data by Tong et al.[44], and the analytical result by microscopic solvability 

theory are presented for comparison.  Significant differences are not observed among the 

data.  Figure 2. 13 left panel shows plots of the trajectories of the four tips indicated in 

Figure 2. 12 right panel for the case where D=3, d0/W0=0.185, and ε=0.05.  The dendrite 

tips move outward due to solidification, but the growth direction is changed by the 

external rotational velocity.  As a result, a spiral like trajectory is observed up to 90 

degrees rotation.  The right panel of the same figure shows a time history of the tip 

velocities of the four tips.  It can be seen that all tips grow evenly.   Thus, our numerical 

methodology provides a correct simulation of dendrite growth.  The phase-field contours 

of (a) no rotational velocity field, (b) rotational velocity field and consideration of 

crystallographic orientation change, and (c) (b) rotational velocity with no consideration 

of orientation change are presented in Figure 2. 14.  Clearly, the contour obtained by 

condition (c) seems to be wrong since a pure rotation velocity field is imposed on whole 
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computational domain.  A change of orientation must therefore be included in the phase-

field equation. 

2.4.3.4.2 Linear shear velocity field 

Linear shear velocity is imposed on a computational domain in this section.  The 

domain is schematically illustrated in the left panel of Figure 2. 15.  The computational 

domain is defined by 641x641 grid points with Δx/W0=Δy/W0=0.4, and symmetric 

boundary conditions are imposed on all four sides.  A circular solid seed is initially 

located in the middle of the left wall (ϕ=1 and θ=0 are specified inside the seed), and 

under-cooling is set to be Δ=0.55 in the liquid phase.  The operating conditions are 

defined as D=3, d0/W0=0.185 and ε=0.05.  The linear shear velocity field uext=(uext, vext) is 

defined to be 
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 (2.4.17) 

where L denotes the side length of the computational domain (=640Δx). As shown 

in the right panel of Figure 2. 15, a horizontally-oriented dendrite arm evolves rightward 

and changes its direction to downward due to the imposed shear velocity field. 

In order to evaluate the numerical result quantitatively, a comparison of a 

trajectory obtained from the simulation with the one obtained in a semi-analytical way is 

performed.  A change of tip location (displacement) with respect to time due to 

convection by external velocity (xtip
ext

 (t), ytip
ext

 (t) ) is computed by the following 

equations. 

 

 

    



t
sol

tipext

ext

tip

ext

tip

dxvty

tx

0

0


 (2.4.18) 
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Since external velocity in the x direction is absent, tip motion in the x direction is 

induced only by solidification.  However, an analytical solution of the tip velocity is not 

available in the test case, so the tip locations in the x direction with respect to time xtip
sol

 

(t) due to solidification are simply extracted from the numerical result, thus the procedure 

is semi-analytical.  A change of crystallographic orientation α at the tip location is 

induced by rotation due to the imposed external velocity given by 

  
  

 




t
sol

tipext
d

y

xv
t

0



  (2.4.19) 

Due to the change of orientation α with respect to time, the direction of tip 

velocity is bended downward.  By using α and the solidification velocity in the x 

direction utip
sol

 (computed from xtip
sol

), the solidification velocity in y direction is 

computed by 

 tansol

tip

sol

tip uv   (2.4.20) 

A change of tip location due to solidification can be expressed by 

     
t

sol

tip

sol

tip

sol

tip dxvty
0

  (2.4.21) 

Finally, semi-analytically obtained tip location in y direction would be given by a 

summation of the tip displacement caused by the external velocity and solidification. 

      tytyyty sol

tip

ext

tip

total

tip  0  (2.4.22) 

where y0 is the initial tip position.  An explicit Euler scheme is applied to the 

numerical integration of the above equations.  A comparison of a trajectory directly 

obtained by numerical simulation with a trajecteory determined by the above semi-

analytical method with components ytip
ext

 and ytip
sol

 is shown in Figure 2. 16.  The 

trajectories correspond well with each other.  The analysis shows that a change of 

crystallographic orientation due to imposed external velocity is properly introduced to 

phase-field model by the developed numerical methodology. 
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2.5 Material Point Method 

The formulation and  calculation procedure of the material point method (MPM) 

are briefly described in this section.  Appendix B is also available for more detailed 

explanation of the derivations of some of the equations and notes for an actual numerical 

implementation. 

2.5.1 Governing equations of material point method 

As mentioned in the preceding section, The equations used in the MPM are the 

equations of motion (2.2.4), constitutive relation, and strain-displacement relation 

eq.(2.2.7).  The solution methodology of the equations is based on a weak form of 

eq.(2.2.4) which is the same as the usual FEM.  The weak form on the computational 

domain Ω is given by the following equation with an arbitrary test function δw. 

 
 













dbdd

dbdd
dt

vd solid

wwσwτ

wwσw









:

 (2.5.1) 

From the first to the second line, The Gauss divergence theorem is applied, and a 

traction n

 σ  is defined on the domain boundary ∂Ω.  In the MPM, a solid body is 

represented by a collection of material points, and all information about the material 

properties and historical variables are carried by the points.  Since eq.(2.5.1) is 

constructed based on continuous field variables while available variables are discretely 

distributed on the material points, the continuous field variables have to be reconstructed 

somehow from the discrete variables on material points. 

In the MPM, the following particle characteristic function χp is defined to 

represent the support domain of each material point p at given location x and time t. 

     dtxV pp ,


  (2.5.2) 

where Vp denotes a volume associated with each material point.  The following 

aspect is also assumed for χp . 
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   1,
1




pN

p

p tx


  (2.5.3) 

where Np is the total number of material points.  The equation indicates that χp 

satisfies the partition of unity at a given location x.  Using both eq.(2.5.2) and (2.5.3), any 

continuous field variable  txf ,


 is related to the discrete variable on material point fp by 

the following equation (see appendix B.1.1 for the detailed derivation). 

      



 dtxfdtxf

pN

p

pp ,,
1


   (2.5.4) 

Introducing a relationship in eq.(2.5.4) to eq.(2.5.1) and a linear shape function 

 xN i


 to δw, the following equation is obtained (see appendix B.1.2 for the detailed 

derivation). 

     0
1 1 1

   
  



p p pN

p

N

p

N

p

ivpppvppvp

p

p dSxNSxbmVSS
dt

vd
m



σ  (2.5.5) 

where mp and 
pv


 are a mass and a velocity associated with each material point, 

respectively.  The terms vpS  and vpS denote a weighted shape function and its gradient, 

and specify a mapping way between a material point and a background nodal point. 

     


p

dxNtx
V

S ip

p

vp



,

1
  (2.5.6) 

     


p

dxNtx
V

S ip

p

vp



,

1
  (2.5.7) 

Let us define a rate change of nodal momentum 
ip


by the following equation. 

 vp

N

p

p

piii S
dt

vd
mvmp

p





1


  (2.5.8) 

where mi and 
iv


 denote a nodal mass and a nodal acceleration.  Internal and 

external force vectors are also defined by 



www.manaraa.com

45 
 

 

4
5
 

 

    












p

p

N

p

ivpp

ext

i

N

p

pvppi

dSxNSxbmf

VSf

1

1

int







σ

 (2.5.9) 

Simplified form of eq.(2.5.5) is obtained with using the above defined vectors. 

 ext

iii ffp


  int  (2.5.10) 

The nodal equation of motion for each node is the equation to be solved in the 

actual computation. 

2.5.2 Calculation procedure of the MPM 

Nodal acceleration must be computed with nodal internal and external force by 

eq.(2.5.10) at every time step.  In order to solve the equation, the  material point variables 

are mapped to the fixed background nodes at the beginning of each time step.  Since 

variables on the nodal points are always discarded before the mapping, the nodal points 

are simply used as a computational scratch pad.  By using the continuous mapped nodal 

velocity field, a rate of deformation tensor or a strain rate at any location can be 

computed with using a linear shape function. 

 

       

   














nnod

i

ii

nnod

i

ii

T

xNvvxN

xvxvtx

112

1

2

1
,




ε

 (2.5.11) 

Introducing the relationship between the continuous and discrete variables given 

by eq.(2.5.4), a strain rate on each material point is then computed using eq.(2.5.11). 
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 
 

   

   

 



 




















 



nnod

i

vpiivp

p

pii

nnod

i

ipi

p

p

p

p

SvvS
V

dtxxNv

vdtxxN
V

d
V

tx
tx

p

p

p

1

1

2

1

,

,
2

1

,
,























εε

 (2.5.12) 

Now the strain increment is available at each material point, and is used to update 

the stress state based on an appropriate constitutive relation.  Using the updated stress at 

each material point σp, the internal force vector on each background node is computed by 

eq.(2.5.9).  Considering the external force vector, the nodal acceleration in eq.(2.5.10) is 

finally obtained.  The nodal acceleration is used to update the location and the velocity of 

each material point  using the nodal shape function. 

The numerical procedure is briefly summarized as follows 

 

(1) Initialization of material points 

(1-a) Generate material points 
px


 
inside the continuum solid body 

(1-b) Assign material properties, i.e. particle volume, density, elastic modulus, 

and Poisson’s ratio etc., and initial variables 
pppv εσ ,,


 etc. 

(2) Discard the nodal variables ext

iiiii ffppm



,,,, int  

(3) Map variables from material points to the nodal points 

(3-a) Construct the weighted shape function vpS  and its gradient vpS
 
by 

eq.(2.5.6) and (2.5.7) 

(3-b) Assemble the material point variables to nodal points 

 













p

p

N

p

vpppi

N

p

vppi

Svmp

Smm

1

1


 (2.5.13) 

(4) Update the stress and strain on material points 

(4-a) The deformation rate tensor on each material point is constructed by 

eq.(2.5.12) 

  



nnod

i

vpiivp

p

p SvvS
V 12

1 
ε  



www.manaraa.com

47 
 

 

4
7
 

(4-b) Stress is updated based on a constitutive relation. 

(5) Compute the internal and external forces on each node by eq.(2.5.9) 

 

    












p

p

N

p

ivpp

ext

i

N

p

pvppi

dSxNSxbmf

VSf

1

1

int







σ

 

(6) Compute the rate of momentum on each node and update the momentum 

(6-a) Compute the rate change of nodal momentum by eq.(2.5.10) 

 ext

iii ffp


  int  

(6-b) Compute the nodal momentum by explicit Euler scheme 

 tppp i

n

i

n

i   1  (2.5.14) 

(7) Update the locations and velocity of the material points by using nodal 

variables 

 

t
m

p
Svv

t
m

p
Sxx

i

i
nnod

i

vp

n

p

n

p

i

i
nnod

i

vp

n

p

n

p






















1

1

1

1

 (2.5.15) 

(8) Repeat (2)-(7) until the computation  reaches the desired time step 

 

The stress state is updated right after the variables on material points are mapped 

to the background nodal points in the above calculation sequence.  The methodology is 

called update stress first (USF). In update stress last (USL) stresses are updated after 

computing new location and velocity of material points (after procedure 7 in the above 

outline) [45].  According to Buzzi et al.[46], the USF gives better energy conservation 

than the USL.  For this reason, the USF is adopted in this thesis. 

2.5.3 Weighted shape function 

A weighted shape function vpS  and its gradient vpS  in eq. (2.5.6) and (2.5.7) 

define a way of mapping from the material points to the background nodal points and 

vice versa.  Characteristics of the function strongly affect the calculation results.  
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Basically, the function is composed of a usual shape function Ni(x) and a particle 

characteristic function χp, so that several options of χp are available. 

In the original MPM [30], the following Dirac delta function is selected as the 

particle characteristic function. 

    pp xxtx


  ,  (2.5.16) 

The function gives expressions of  pivp xNS


  and  pivp xNS


 . The use of 

the function has an advantage in terms of computational efficiency if Cartesian 

background cells are used.  A given material point maps its variables only onto 

background nodes of the cell which the particle is contained in, and a given node maps its 

information only onto material points in adjacent cells.  One disadvantage of the particle 

characteristic function is that it does not satisfy the partition of unity (it takes infinity at 

the particle location).  Another disadvantage is called grid-crossing instability which 

typically occurs when a material point crosses a cell boundary.  In this situation, the 

influence of a certain material point on some nodal points changes drastically.  More 

specifically, the gradient of the weighted shape function, i.e.  pivp xNS


  changes its 

sign by crossing the cell boundary.  The discontinuous change often causes physically 

spurious oscillation [47], and it is not suitable for large deformation analysis. 

In order to prevent undesirable spurious oscillation, the use of smoother weighted 

shape functions is effective.  Bardenhagen et al. [47] chose the following Heaviside 

function as a particle characteristic function for one-dimensional case. 

  


 


otherwise

xfor
tx

p

p
0

1
,  (2.5.17) 

where, again, Ωp denotes a support domain of a single material point.  Variables 

associated with the particle are assumed to be uniformly distributed within the support 

domain.  Typically a linear shape function is used for the shape function  xN i


, i.e. for 

one-dimensional case 
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i
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0

 (2.5.18) 

where xi is a location of background nodal point i and Δx is its spacing with 

neighbor nodes.  The combination of eq.(2.5.17) and (2.5.18) for a weighted shape 

function is called the contiguous particles GIMP method [47].  By using the functions, 

vpS  and vpS  are represented by the followings. 

 

 
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 
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 (2.5.19) 
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   

   




























pippppip

pipp

pipppip

pipp

pippppip

pip

vp

lxxxlxxllxxx

lxxxlx

lxxlxlxx

lxxlxx

lxxxlxxllxxx

lxxx

S

2/

/1

/

/1

2/

0

 (2.5.20) 

where 2lp is the side length of the rectangular particle domain.  For instance, 

profiles of vpS  and vpS  with ∆x=1 and lp=0.5∆x are plotted in Figure 2. 17 and Figure 

2. 18, respectively.  A solid line represents the weighted shape function and its gradient 

of the original MPM (use eq.(2.5.16) for a particle characteristic function) whereas the 

solid line with dots denotes those of GIMP.  Since the particle domain is considered in 

the GIMP (domain of influence of GIMP is |xp-xi|≤Δx+lp while |xp-xi|≤Δx for an original 
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MPM), a smoother transition near cell boundary is observed in the profile of a weighted 

shape function of GIMP.  A gradient of the weighted shape function does not have a 

drastic change in terms of its sign.  This characteristic of the shape function suppresses 

spurious oscillation when a material point is passing through the cell boundary.  In this 

thesis, GIMP is applied to the solution methodology of MPM. 

The above discussion is only for one-dimensional case.  Extension of the 

weighted shape function to two-dimension is straightforward.  Similar to the  

construction of the two-dimensional shape function, the relation      ySxSyxS vpvpvp ,  

is valid.  Using this relationship,  yxSvp ,
 
is represented in a simple form (see appendix 

B for details). 

2.5.4 Restriction of time step size 

For computational simplicity, the lumped mass assumption is applied to construct 

the nodal mass matrix.  Thanks to this assumption, the mass matrix is diagonalized, so 

that no matrix needs to be constructed and solved in eq.(2.5.10).  An explicit time 

stepping scheme is typically chosen as a solution methodology.  This is a significant 

advantage for our simulation in terms of handling large deformation, updating the solid 

structural model, and imposing the complicated material constitutive model.  However, 

the explicit scheme is restricted by so-called CFL (Courant-Friedrichs-Lewy) condition.   

Since stress waves within the solid material must be resolved with the scheme, the time 

step size is limited by the wave speed (speed of sound in the solid matter).  The speed of 

the longitudinal wave in a solid material csolid is defined by the following equation (see i.e. 

[48]). 

 


3/4GK
csolid


  (2.5.21) 

Where K and G denote the bulk modulus and the shear modulus, i.e. K=E/3(1-2ν) 

and G=E/2(1+ν).  The CFL condition gives the following limitation on time increment. 
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  

solidc

yx
t




,min  (2.5.22)

 

As mentioned in the above, the inelastic material model is also included in this 

thesis.  Basically the speed of sound in the part where inelastic deformation occurs is 

smaller than in the part where fully elastic deformation takes place [48].  From this 

viewpoint, the limitation represented by eq.(2.5.22) should be valid for a simulation with 

inelastic deformation. 

2.5.5 Treatment of large deformation 

As stated in the above sections, information on the material point is mapped onto 

background grids which have an arbitrary configuration for every single time step in a 

MPM.  Since the reference is always to a current configuration, the formulation is called 

the updated Lagrangian scheme (i.e.[49]).  In addition, the incremental strain computed 

every time step is assumed to be small because the limitation of a time increment in 

eq.(2.5.22) is small.  Because of this, the current and the deformed configuration within a 

single time step are assumed to be equivalent.  This allows us to use the small strain 

formulation, i.e. eq.(2.2.7), to compute the strain increment for each incremental time 

step (nonlinear strain term is negligible).   

2.5.5.1 Objective stress rate 

One treatment is required to impose the constitutive relation on the solid material.  

A rate form of the stress-strain relationship, i.e. eq.(2.2.6), is used to handle non-linear 

material behavior.  However, the rate change of a Cauchy stress tensor is not objective 

while the rate change of a strain rate tensor is objective.  In order to satisfy the frame 

indifference, an objective stress rate tensor is used to impose the constitutive relation.  

Although there are some choices on an objective Cauchy stress rate, i.e. Truesdell rate 

and Green-Naghdi rate etc., the Jaumman stress rate is introduced to this thesis because 

of its simplicity in terms of actual numerical implementation.  In order to remove the 
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effect of rigid body rotation from the stress tensor, the Jaumann rate of Cauchy stress σ̂  is 

represented by the following form. 

 σωωσ
σσ


dt

d

dt

d ˆ
 (2.5.23) 

where ω is a spin tensor defined by 

 
























i

j

j

i

x

v

x

v

2

1
ω  (2.5.24) 

The stress rate is now substituted into a rate form of the constitutive relation. 

 
dt

d

dt

d

dt

d ε
Cσωωσ

σσ
:

ˆ
0  (2.5.25) 

Assuming tdtd  // σσ  and tdtd  // εε , an incremental Cauchy stress 

becomes the following. 

   t ωσσωεCσ :0  (2.5.26) 

Since USF (Update Stress First) method is used in this thesis, ω in the R.H.S. of 

the equation is computed by the strain increment Δε
n+1

 at time step n+1. If we use σ
n
 at 

previous time step on the R.H.S of the equation, Δζ
n+1

 is explicitly calculated. 

2.5.5.2 Deformation of material point 

Since a solid body is represented by a collection of material points, a material 

point itself is also deformed as the body is deformed.  Due to the deformation of  material 

points, the support domain of each point is changed.  The change in the support domain 

of each material point is approximately tracked by a deformation gradient tensor F at the 

center of the material point (a time evolution of F is described in appendix B).  Using F, 

the area of the support domain A at the current time step can be described by 

 Fdet0AA   (2.5.27) 

where A0 denotes the area of the support domain at the initial state.  For an actual 

computation, the simplicity of the MPM is lost if a rotation of the support domain is 
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included.  The procedure for the construction of the weighted shape function becomes 

complex (the calculation of the distance between a certain node and a certain point on the 

support domain of each particle becomes complicated).  In this thesis, the support domain 

change is assumed to occur through a change of the side length in the x and y directions.  

Rotation of each support domain is not included.  Specifically, side lengths of a current 

support domain in the x direction lx and in the y direction ly are computed by the 

following equation. 
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From appendix B, the following relation is available for a time evolution of F. 
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By taking determinant of the equation, 
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Since a small strain increment is assumed in this thesis, the equation can be 

approximated by 
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 (2.5.31) 

Eq.(2.5.28) should be a good approximation for a change of a support domain of 

each material point. 

It should be noted that nodal mass is assembled by eq.(2.5.13).  If some material 

points are close to cell boundaries, an extremely small nodal mass will be assembled to 

some nodes.  This creates a phantom node which might have a large unphysical nodal 

acceleration associated with the procedure in eq.(2.5.15).  In order to avoid this situation, 

a tolerance of mass MTOL is defined in the actual computation. 
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2.5.6 Treatment of contact 

A contact phenomenon associated with an applied deformation is also of interest 

in this thesis, i.e. self contacts within single dendrite and contacts on grain boundaries.  

Numerical methods for the structural analysis should account for this phenomenon.  Due 

to the use of background grids for solving the equation of motion, the no slip condition is 

automatically imposed on material points which are a contact pair because a single 

velocity field which is reproduced from the nodal velocity is imposed on those material 

points when the points are located in a common background cell (those material points 

behave as a single solid structure).  In the actual phenomenon, a sliding motion would be 

observed, and would be dependent on the contact pressure and solid fraction of the region 

etc.  A numerical algorithm which is capable of handling such sliding motion in MPM 

analysis has been developed by some researchers [53 and 54].  However, for numerical 

simplicity, only the no slip contact condition which is automatically included in MPM is 

considered in this thesis as a first approximation. 

For instance, an impingement analysis of two squared solids with an elasto-

perfectly plasticity constitutive model is performed in Figure 2. 19.  The simulation is 

only to present the computational capability of the MPM to handle contact phenomenon, 

so the details of the material model etc. are omitted here. 

The equivalent plastic strain (upper panels) and von Mises stress (lower panels) 

contours are presented at the initial state, 12.5%, 25%, and 37.5% compression (from left 

to right panels).  The two squares are merged and compressed together without any 

special treatment.  The capability of handling the contact in a simple manner is sufficient 

as a first approximation of the phenomenon in this thesis. 

2.5.7 Validation of the material point method 

In this section, benchmark problems are demonstrated to examine the accuracy of 

the material point method implemented in this thesis. 
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2.5.7.1 Validation of elastic response: Timoshenko 

cantilever problem 

The elastic material behavior of the MPM is examined in this section (see 

2.2.3.1.1 and appendix B for details of the model).  The Timoshenko and Goodier 

cantilever problem is selected as the validation problem. The problem is employed to 

validate our material point method in the elastic regime.  As shown in Figure 2. 20, a 

beam is placed on the left wall and vertical load is applied at the right tip of the beam.  

Analytical solutions of the horizontal displacement dx and the vertical displacement dy are 

given by the following equations [72]. 
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Stress components are represented by 
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 (2.5.33) 

where H is the height of the beam, L is the length of the beam, and Pl is the point 

force acting at the tip of the beam.  I =H
3
/12  is the second moment of area around z-axis, 

ν is  Poisson’s ratio and E is Young’s modulus.  As mentioned before, the plane strain 

condition is assumed. The geometrical settings of the beam are the same as the work done 

by Andersen et al. [73], L=8 and H=1.  The beam is discretized into 32x4 background 

cells, and each cell is filled with 2x2 material points (a total of 512 material points) as 

illustrated in Figure 2. 20 lower panel.  Boundary conditions are imposed as Figure 2. 21.  

For the left boundary, the centroid of the cross section of the beam is fixed in both x and y 

directions.  The nodal points on the cross section are fixed only in the x direction.  As 
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pointed out by Timoshenko et al. [72-74], the analytical solutions in the case described 

above are obtained only if the load Pl has the same parabolic distribution as ηxy on the 

cross section at the tip.  For this reason, the same parabolic profile as the shear stress is 

imposed on the right end of the beam as a loading condition.  Specifically, the loading is 

numerically implemented in the form of an external acceleration (same as the body force 

term in eq.(2.5.5)) such that the summation of the acceleration becomes equivalent to a 

magnitude of the loading Pl.  Since the material point method is a transient analysis, an 

immediate change of loading condition may cause vibrations within the beam.  In order 

to avoid the undesired vibrations, the loading is assigned as the following cosine type 

moderate time variation. 
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where Tp is the time period.  Simulation is performed up to t=40 with setting 

Tp=20.  A time increment ∆t=0.001, Young’s modulus E=3x10
7
, Poisson’s ratio ν=0.3, 

density of the beam ρ0=10
3
, and Pl=100 are used as the simulation conditions. 

Figure 2. 22 represents time history of the vertical displacement at the right edge 

of the beam.  The beam reaches an equilibrium state around t=20, so the comparison of 

the results at t=40 should be sufficient.  A comparison of the vertical displacement along 

the horizontal centerline is plotted in Figure 2. 23.  No significant difference is observed 

between our calculation results and the analytical solution.  Contours of ζxx on 

background Eulerian nodes are illustrated in Figure 2. 24.  Tensile stress acts on the 

upper side of the beam whereas compression stress acts on lower side.  The stress state is 

what we expected.  Figure 2. 25 and Figure 2. 26 show profiles of ζxx and ηxy along the 

vertical centerline (at x=4) of the beam.  The xx component of the stress corresponds well 

with the analytical result given by eq.(2.5.33).  On the contrary, the xy component of 
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stress shows a stepwise profile, but its averaged profile seems to match with analytical 

one.  As pointed by Andersen et al.[73], the profile is caused by the use of a linear shape 

function, i.e. eq.(2.5.18).  The function can only describe a linear dependence on x or y 

within the background cell while the analytical solution of ηxy is represented by a 

quadratic function of y.  Thus, the lack of ability to construct higher order interpolation 

within the cell is the main cause of the profile.  The issue would be improved by 

introducing a higher order shape function or a finer background mesh.  For instance, the 

results obtained by meshes four times finer  (64x8 background cells with 2048 material 

points) are presented in Figure 2. 27 and Figure 2. 28.  The resolution of ηxy is improved 

by the modification.  Basically, the phase-field simulation is performed with quite fine 

meshes which can resolve the variations of phase-field and temperature within the diffuse 

interface.  The issue of the stepwise distribution of ηxy would not be significant. 

2.5.7.2 Validation of elasto-plastic response: an elasto-

plastic bar under tensile/compression loading 

Elasto-plastic mechanical response is examined in this section (see 2.2.3.1.2 and 

appendix B for details of the model).  A simple tensile and compression loading problem 

is designed and demonstrated.  A dumbbell type specimen shown in Figure 2. 29 is 

defined (left panel) and discretized with 288 material points (right panel).  On the top and 

bottom edges of the specimen, a displacement is imposed as the following function of 

time (through nodal velocity) such that both compression and tensile loading act on it. 
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where A0 is the amplitude of the sine wave, and again Tp is the time period.  The 

values A0=0.01(maximum strain =0.5%) and Tp=40 are used in this validation. The 

mechanical properties of the specimen are specified as  E=3x10
7
, ν=0.3, and ρ0=10

3
 .  In 
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addition, the yield stress ζY=6x10
4
(yield at 0.2% tensile strain) is defined for the elasto-

perfectly plasticity model. 

The computed stress-strain curve is plotted in Figure 2. 30.  In the graph, an 

equivalent stress ζeq is defined by the von Mises stress with a sign that depends on ζyy.  

As indicated in the graph, the plastic strain starts evolving exactly at the yield stress, and 

stress remains at the yield stress during the plastic deformation.  Once the total strain 

reaches  its maximum (0.5% which is determined by A0), unloading takes place  

following the elastic regime.  Since no anisotropy in terms of plasticity is considered, the 

specimen reaches yielding at the same magnitude of the yield stress as in the compression 

state.  As a result, the specimen has stress due to plastic deformation even if the total 

strain returns back to zero.  The stress-strain curve is exactly what we expected from the 

parameters and imposed displacement settings.  From the validation presented,we can see 

that the elasto-perfectly plasticity model implemented in the MPM in this thesis should 

be adequate to use for an actual problem. 

2.5.7.3 Validation of an elasto-visco-perfectly plastic 

response: an elasto-visco-plastic bar under tensile loading 

The Elasto-perfectly-visco-plastic material model is examined in this section (see 

2.2.3.1.3 and appendix B for details of the model).  For the visco-plasticity model, a rate 

of change of deformation affects  its dynamic yield stress, thus a constant displacement 

with respect to time is imposed as the boundary condition on the same specimen used in 

the preceding section (also the same discretization).  In this validation, three different 

displacement boundary conditions, i.e. dε/dt=4.0e-4, 8.0e-4, and 1.6e-3, are specified.  

The same parameter settings as the preceding section are used except for the relaxation 

time ηvisco=0.13 which defines the decay time of the viscous effect .   

The computed stress-strain curves of the three strain rates are presented in Figure 

2. 31.  Higher imposed strain rate provides higher yielding stress.  As presented in 
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appendix B, the Perzyna model with a function Φ(fY)= fY  provides a linear dependence 

of the dynamic yield stress on the strain rate. 

The numerical code of the MPM developed in this thesis possesses a capability of 

handling an elasto-perfectly-visco-plasticity constitutive behavior. 

2.5.7.4 Validation: a rectangular bar with large shear 

deformation 

In the last three sections, the basic characteristics of the constitutive models 

implemented in this study are examined.  Validation presented in this section examines 

the capability of the MPM to handle large deformation.  The shearing process of a 

rectangular bar with an elasto-perfectly plasticity constitutive law is computed.  The same 

simulation is performed using  FEM  ANSYS 12.0 [75]  for  comparison purposes. 

As illustrated in the left panel of Figure 2. 32 , a rectangular solid bar whose 

dimension is L/2xL is defined, and a lateral displacement is imposed on both the upper 

and the lower surfaces of the bar. Vertical displacement is prohibited on the boundaries.  

The solid bar is represented by 25x50 cells for both the MPM analysis (background cell 

filled by 2x2 material points) and the FEM analysis (quadrilateral element with linear 

shape function).  For the MPM analysis, the full computational domain is defined by 

101x51 background nodes, and a phase-field is assigned to each node such that ϕ=0 

corresponds to the solid outline (Figure 2. 32 right panel) at the initial state.  The phase-

field profile is advected by the solid deformation velocity with the methodology 

developed in the preceding section.  The material properties of the solid bar are specified 

as E=200[GPa], Poisson’s ratio ν=0.33, and yield stress ζY=400[MPa] for both the MPM 

and FEM analysis.  In order to treat large deformation (geometrical non-linearity), an 

option of non-linear geometry NLGEOM is activated in the FEM analysis done by 

ANSYS 12.0. 
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The computed von Mises stress (left panels) and equivalent plastic strain (right 

panels) contours for both the MPM (upper panels) and the FEM (lower panels) at 40% 

shear strain (= displacement / height of the solid bar) are illustrated in Figure 2. 33.  In 

the result of the MPM, material points lie on the deformed configuration, and the contour 

colors are overlaid on each material point. The increment of the equivalent plastic strain 

is computed by the following equation. 
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Next, the total equivalent plastic strain is defined as a summation over time. 
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As presented in the figure, most parts of the solid bar reach the yield stress, thus 

the deformation is considered to be large enough.  Quite similar Mises stress and 

equivalent plastic strain distributions are observed for both the MPM and the FEM 

analysis. The left panel of Figure 2. 34  shows the profiles of the von Mises stress along 

the sampling lines indicated in the upper panels of Figure 2. 33 .  Although small 

differences between two methods are observed, both profiles have quantitatively good 

agreement with each other.  The computed solid outlines of both methods are also 

presented in Figure 2. 34 right panel.  For the result of the MPM, ϕ=0 contour line is 

plotted as the solid outline.  The MPM implemented in this thesis provides correct solid 

motion and advected phase-field profile due to the motion. 

In order to show the computational capabilities of the MPM to handle large 

deformation, the deformation state at 60% shear is shown in Figure 2. 35.  At this 

deformation state, the FEM analysis is terminated due to mesh collapse around corners of 

the solid bar. Therefore, the choice of the MPM as a numerical method of solid 

deformation should be suitable, and gives good performance even if it couples with 

phase-field advection. 
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Figure 2. 1 Diagrams of interactions among three fields; (a) Interactions for full coupling; 
(b) Interactions simplified and considered in this thesis. 
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Figure 2. 2 Geometrical settings used in a diagonal translation of a circle problem; A 
circle is initially placed at (0.25, 0.25) and moves diagonally until its center 
reaches at (0.75, 0.75).  Then, the circle moves back to an initial location. 

  

Figure 2. 3 Phase-field contours for a diagonal translation of a circle problem; (a) Meshes 
of 80x80; (b) Meshes of 160x160; Left panels: at initial state; central panels: 

at a half domain translation; right panels: at a full domain translation. 
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Figure 2. 4 Phase-field profiles along a horizontal center line passing through the center 
of the circle for three different states (initial, a half translation, and a full 

translation); (a) Meshes of 80x80; (b) Meshes of 160x160. 

 

Figure 2. 5 Computed ϕ=0 contour lines for three different states (initial, a half 
translation, and a full translation); (a) Meshes of 80x80; (b) Meshes of 

160x160; Centers of circles correspond with each other. 
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Figure 2. 6 L1 and L2 norms computed from a diagonal translation of a circle problem 
with different spatial increment Δx while an interface thickness W is fixed; 
Meshes of 160x160 are used; From fitted curves presented in the figure, an 

order of accuracy of the CIP method implemented in this thesis shows 2.6-3.1 
order. 

 

Figure 2. 7 L1 and L2 norms computed from a diagonal translation of a circle problem 
with different Δx’=Δx/W; W is varied while a special inclement Δx is fixed; 

Meshes of 160x160 are used. 
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Figure 2. 8 Representations of a crystallographic orientation in the computational model; 
(a) Configuration at initial state or no deformation state; (b) Configuration at 

deformed state; Due to the applied deformation, a reference frame which 
aligns with the orientation direction is changed.  

 

Figure 2. 9 A schematic of phase-field profiles across the interface at current (dashed 
line) and next time step (solid line); the portion where a liquid phase changes 
to a solid phase needs to have the same orientation as the closest solid phase. 
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Figure 2. 10 A sequence of a diagonal translation of a circle problem with the extension 
of velocity field; Upper left panel: initial phase-field profile; Upper central 
panel: contours of the signed distance function converted from phase-field; 

Upper right panel: phase-field at a half translation; Lower panels: a sequence 
of the extension of velocity field at initial time step at initial substep (lower 
left panel) at a.half way of the extension (lower central panel), and at a full 

extension of velocity field (lower right panel).  Velocity vectors are presented 
in the panels. 
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Figure 2. 11 Computed phase-field contours of a diagonal translation of a circle with the 
extension of velocity field extension; (a) Phase-field profiles along a 

horizontal center line passing through the center of the circle; (b) Computed 
ϕ=0 contour lines for three different states (initial, a half translation, and a full 

translation);  Meshes of 80x80 are used. 
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Figure 2. 12 Geometrical settings and boundary conditions of phase-field dendritic 
solidification under a given rotational velocity field; Right panel: a 

configuration of Tip1~Tip4 and magnified area which will be presented in the 
later figures. 

Exact Data
* This study: No-rotation This study: Rotation

4 0.139 0.05 0.0170 0.0175 0.0162 0.0164

3 1.185 0.05 0.0170 0.0175 0.0180 0.0180

4 0.139 0.03 0.0111 0.0112 0.0109 0.0108

D d 0 /W 0 ε
Vd 0 /D

 

Table 2. 1 Comparisons of dimensionless tip velocities with benchmark data 

* Source: Tong, X.; Beckermann, C. Phys. Rev. E 2001, 63, 061601 
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Figure 2. 13 Trajectories (upper panel) and time histories of dimensionless tip velocity 
(lower panel) of TIP 1~TIP 4           rotation (D=3,d0/W0=0.185,ε=0.05) 
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Figure 2. 14 Phase field contours of three different operating conditions 
(D=3,d0/W0=0.185,ε=0.05);  (a) Without rotation, (b) With rotation at 45 
degrees and a change of orientation angle is reflected in the phase-field 

equation; (c) With rotation at 45 degrees, and no consideration is made for a 
change of orientation angle in the phase-field equation; (d) Computed ϕ=0 

contours of (a) and (b). 
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Figure 2. 15 Computational settings of dendrite solidification under a given linear shear 
velocity field (upper panel) and computed ϕ=0 contours at every 5000 time 

steps with a trajectory of dendrite tip (lower panel); D=3,d0/W0=0.185,ε=0.05 
are used. 
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Figure 2. 16 Trajectories of growing dendrite tip under linear shear velocity field for four 
different cases; A trajectory directly obtained by phase-field simulation (cross 

mark), a trajectory obtained by only considering imposed external velocity 
(open square), a trajectory obtained by only considering tip solidification 

velocity with semi-analytical way (filled square), and a trajectory obtained by 
considering both external velocity and tip velocity (open circle). 
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Figure 2. 17 Weighted shape function of the original MPM and the GIMP 

 

Figure 2. 18 Gradient of weighted shape function of the original MPM and the GIMP 
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Figure 2. 19 Impinging two squares under compression loading; Upper panels: equivalent 
plastic strain; Lower panels: von Mises stress at initial state (left panels), at 
12.5% compression (panels in the second column from the left), at 25% 
compression (panels in the third column from the left), and at 37.5% (right 
panels); No slip contact condition is automatically introduced in the MPM 
analysis. 
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Figure 2. 20 Geometrical settings of the Timoshenko cantilever problem (upper panel) 
and initial distribution of material points (lower panel) 

 

Figure 2. 21 Boundary and loading conditions of the Timoshenko cantilever problem. 
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Figure 2. 22 A time history of vertical displacement of the tip of the beam 

 

Figure 2. 23 A comparison of the vertical displacement along the horizontal centerline of 
the beam between calculation result (open circle) and analytical solution (solid 

line). 
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Figure 2. 24 Contours of ζxx on background nodes; the background cells which include 
material points are only presented. 

 

Figure 2. 25 Comparison of ζxx profiles along vertical centerline (the line at x=4); 
computed stress (open circle) and analytical one (solid line) are plotted; 

computational result is by background cells of 32x4 with 512 material points. 
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Figure 2. 26 Comparison of ηxy profiles along vertical centerline (the line at x=4); 
computed stress (open circle) and analytical one (solid line) are plotted; 

computational result is by 32x4 background cells with 512 material points. 

 

Figure 2. 27 Comparison of ζxx profiles along vertical centerline (the line at x=4); 
computed stress (open circle) and analytical one (solid line) are plotted; 

computational result is by 64x8 background cells with 2048 material points. 
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Figure 2. 28 Comparison of ηxy profiles along vertical centerline (the line at x=4); 
computed stress (open circle) and analytical one (solid line) are plotted; 

computational result is by 64x8 background cells with 2048 material points. 

 

Figure 2. 29 Geometries of a dumbbell type specimen with imposed boundary conditions 
(left panel) and initial allocation of material points (right panel); Only a 

portion of the computational domain is presented. 
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Figure 2. 30 Computed stress-strain curve by the validation of the tensile/compression 
loading with elasto-perfectly plasticity material model. 

 

Figure 2. 31 Computed stress-strain curves of perfectly plasticity model, dε/dt=4.0e-4, 
dε/dt=8.0e-4, and dε/dt=1.6e-3; Conditions of strain rate are indicated by 

arrows in the graph. 
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Figure 2. 32 Geometries and mechanical boundary conditions of a rectangular elasto-
perfectly plastic bar under shear deformation (left panel), and initial phase-
field profile defined on the background nodes (right panel); phase-field is 
advected by the velocity due to solid deformation computed by the MPM 

analysis. 
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Figure 2. 33 Computed contours of von Mises stress (upper panels) and equivalent plastic 
strain (lower panels) at 40% shear of the MPM (left panels) and FEM using 
ANSYS 12.0 (right panel); contour colors are overlaid on material points for 

the result of the MPM analysis. 
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Figure 2. 34 Profiles of von Mises stress along a sampling line indicated in figure 2.33 
upper panels (left panel), and outlines of solid bar (right panel) at 40% shear; 

ϕ=0 contour is presented as the outline of the MPM analysis. 

 

Figure 2. 35 Computed contours of von Mises stress (left panel) and equivalent plastic 
strain (right panel) at 60% shear of the MPM analysis; contour colors are 

overlaid on material points for the result of the MPM analysis. 
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CHAPTER 3 

PHASE-FIELD SINGLE DENDRITIC SOLIDIFICATION 

SIMULATION WITH APPLIED DEFORMATION 

Solidification simulations of a pure substance under externally applied loading are 

employed in chapter 3 and 4.  The simulation with a single dendrite is of interest in this 

chapter.  In addition to the numerical methodology developed in chapter 2, some 

numerical treatments associated with morphological change and the motion of 

computational boundaries are necessary.  The additional numerical treatments are 

presented and validated first, and then some numerical experiments with assembled 

methodologies are performed. 

3.1 Successive Update of Solid Structural Model in the 

MPM due to Morphological Change 

The solid structure is successively and complexly evolved due to the phase 

change in a sequence of our simulation.  Thus, the solid structural model used in the 

MPM has to be properly updated based on the latest solid geometry at every single 

computational time step.  One of the major reasons for introducing the MPM as a 

numerical method of solid deformation analysis is the simplicity in terms of the 

modification of the solid structural model compared to a general Lagrangian FEM.  By 

making use of the characteristics of the particle method, the following numerical 

procedure for the solid model modification is constructed and implemented in this thesis. 

3.1.1 Assumptions and strategy 

The numerical procedure for updating the solid structural model needs to satisfy 

the conservation mass and momentum like the governing equations themselves.  

Basically, since the mass associated with each material point does not change throughout 

the computation of the usual MPM without phase change, total mass conservation is 



www.manaraa.com

85 
 

 

8
5
 

automatically guaranteed.  In order to consider the mass change of the solid phase due to 

phase change in the MPM analysis, the mass change has to be correctly reflected through 

the mass of the material points which reside around the solid-liquid interface.  An 

additional numerical procedure should be constructed for that purpose.  For numerical 

simplicity, the following assumptions are made for the procedure. 

(i) Density change associated with phase change is neglected. 

(ii) The solidified part within single time step does not have any deformation history. 

(iii) The phase-field represents the correct fraction of solid. 

Some researchers (i.e.[76]) emphasize the importance of the density change 

between solid and liquid phases upon solidification through convection, but the 

convection of the liquid phase is out of the scope of this thesis, thus the effect is 

neglected.  As stated in chapter 2, thermal stress and transformation stress are assumed to 

be absent, so that initial strain/stress is  not caused within the newly formed solid part.  

By this assumption, the newly formed solid part would not affect the conservation of 

momentum.  Due to assumptions (i) and (ii), the phase-field would represent the correct 

fraction of solid ψ=(1+ϕ)/2 in the newly solidified part within a single computational 

time step.    Thus, mass conservation is taken care of in the solid model update procedure 

using a fraction of solid defined by phase-field. 

 3.1.2 Update procedure of solid structural model 

At the initial state, the phase-field ϕ(x,t) is defined by the hyperbolic tangent 

profile, i.e. eq.(2.3.4) such that the ϕ=0 contour corresponds to solid-liquid interface.  

Depending on the phase-field ϕ(xp,t) at each material point location xp, a volume 

associated with each material point would be defined by the following way since no 

deformation is assumed at the initial state. 

 
 

  


  
dx

x
V pp

p









2

1
 (3.1.1) 
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where χp is the particle characteristic function mentioned before.  A support 

domain of the material point is approximated by the rectangular area lpx0xlpy0 .  For 

instance, lpx0=Δx/np and lpy0=Δy/np if two material points np=2 are assumed in the fully 

solidified background cell (ϕ=1) for each direction, i.e. npxnp points per two dimensional 

cell.  Eq.(3.1.1) should be simplified by the following. 

 
 

00
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1
pypx

p

p ll
x

V







 (3.1.2) 

By setting the reference density ρ0 from assumption (i), the mass of each material 

point is denoted by 

 pp VM 0  (3.1.3) 

For every single computational time step, the solid-liquid interface is advanced by 

phase-field simulation.  Due to the solidification, the mass of the solid phase  is increased. 

Therefore  the change of mass has to be properly reflected in the solid structural model 

used in the MPM.  The following three cases, i.e. Figure 3. 1 (a) and (b), are considered 

in the procedure.  As shown in Figure 3. 1 (a), an advanced interface intersects with two 

sides of a background cell, but no existing material points are inside the cell.  In that case, 

two material points are simply inserted at the intersections.  From assumption (ii), the 

points do not have any deformation history; lpx0xlpy0 is assumed to be a full support 

domain of the point.  Using the phase-field at the location of newly inserted material 

point, its volume is defined by eq.(3.1.2).  Since the interface passes over a background 

cell by spending several time steps, the cell may have some existing material points when 

the interface is advanced as shown in Figure 3. 1(b).  In the case where np=2 is assumed, 

four particles in total are the maximum number of particles allowed to exist in each cell if 

the cell is not deformed.  In the situation where a point is inserted in a cell which already 

has four points, some existing points are merged with the newly inserted point such that 

the total number of particles does not exceed four.  As a strategy of the merging 



www.manaraa.com

87 
 

 

8
7
 

procedure, the closest existing material point to the inserted point is determined and the 

points are merged together (Figure 3. 1 (b) right panel).  Historical variables of the 

closest point are simply transferred to the merged point.  In order to make use of the 

arrays used for variables of the material points, a stack array with a first in first out 

sequence is utilized to store the information of the temporarily removed material point 

(the closest point to the interface point). 

There is also a case where no material points are included in a background cell 

which is assumed to be fully solid phase.  Since the equation of motion is solved on the 

background nodes by mapping the variables of material points on the nodes, the solid cell 

in the absence of material points does not contribute to the equation.  The situation might 

cause separation or fragmentation as a worst scenario even if the solid part is assumed to 

be continuous.  The numerical procedure to avoid the situation is included in our 

computations.  Throughout the simulation, the phase-field resides on the background 

nodes, so the phase-field value of each background cell is computed as an average of the 

values of the nodes which compose the cell ϕcell (simply arithmetic average is used in the 

actual implementation).  If ϕcell≥0 and the cell does not have any material points at the 

interface, material points are inserted into the cell. The cell averaged historical variables 

and volumes evaluated by the phase-field value at the inserted location are assigned to the 

inserted points for the numerical simplicity. 

3.1.3 Model validation 

The above suggested numerical procedure for the solid structural model update is 

validated in this section.  For  validation purposes, a known phase-field profile and  

motion are assumed on a 151x151 computational domain.  Nine solid grains shown in the 

left panels of Figure 3. 2 are initially allocated in the domain.  Each grain is defined by an 

arbitrary m-fold shape, i.e. a radial distance from the center and the interface R is given 

by 
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    mRR cos1 00   (3.1.4) 

where R0 is the reference radius, ε0 is the strength of anisotropy, and Θ is the 

angle between the x-axis and a given location.  Using the variation of R, the phase-field is 

assigned to each grain as a hyperbolic tangent profile given by eq.(2.3.4) (Figure 3. 2 

upper left panel).  Based on the phase-field profile and the strategy mentioned in the last 

section, material points are allocated within the solid body (Figure 3. 2 lower left panel, 

np=2).   The solid-liquid interface associated with each grain is moved outward with an 

arbitrary constant speed during computation by defining R0 as a function of time.  During 

the computation, deformation of solid phase is not assumed.  As time progresses, the 

distribution of material points is updated while following the motion of the phase-field 

(from Figure 3. 2 lower left to lower right panels). 

Based on assumption (ii) presented in 3.1.2, the mass computed from the phase-

field is considered to be exact throughout the computation.  Using the phase-field on the 

background nodes, the following total mass of the solid phase can be calculated. 

  



l

ltotal

l yxM
2

1
0


  (3.1.5) 

On the other hand, each material point has own mass, so the total mass associated 

with material points is given by 

 
p

p

total

p MM  (3.1.6) 

The numerical procedure mentioned in the last section is constructed such that the 

mass calculate by eq.(3.1.5) and (3.1.6) is equivalent.  Figure 3. 3 shows a time history of 

the two different masses.  The total mass computed by eq.(3.1.5) (solid line) and (3.1.6) 

(dashed line with cross shape plots) correspond well with each other.  Successive changes 

of the solid phase due to solidification by phase-field analysis would be correctly 

introduced into the MPM through updates of the structural model. 
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3.2 Numerical Treatment Associated with Boundary 

Motion 

3.2.1 Strategy and methodology 

Deformation of the solid phase is a result of imposed external loading through a 

body force, an enforced displacement or force, and so on.  In this thesis, the solid 

deformation is assumed to be caused by enforced displacement through the motion of 

rigid walls as observed in pressure castings.  A Cartesian grid is adopted to compute the 

phase-field and the heat equation.  Since the wall displacement imposed in a single time 

step does not necessarily correspond to the spacing of the grids, it is possible for the wall 

to stay between the grids.  In order to perform an accurate and correct phase-field 

simulation, the boundary conditions are properly imposed at the correct boundary 

locations. The ALE (Arbitrary Lagrangian Eulerian) formulation [55 and 56] and cut-cell 

approach (i.e. [57]) are utilized for the purpose. 

The key point of the numerical procedure is the usage of both activated and 

deactivated computational domains.  A full computational domain is composed of the 

two sub-domains as shown in Figure 3. 4.  The treatment allows the activated 

computational domain to change its configuration flexibly depending on the boundary 

wall motion.  For the sake of computational simplicity, the moving walls are assumed to 

be flat and correspond to boundaries of the activated computational domain.  Thus, the 

boundary conditions of phase-field and heat equations are imposed at the moving walls.  

As the moving wall translates, the spacing between the node on the wall and its neighbor 

node becomes smaller.  Spacing is one of the determining factors of the time step size in 

an explicit time stepping scheme used to solve the phase-field and heat equations; the 

smaller spacing restricts the time increment to smaller value.  It is not a desirable 

situation in terms of efficient computing.  In order to avoid the inefficiency, nodes on the 

boundary wall are switched such that the minimum spacing is kept more than Δx0/2 
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where Δx0 is the reference spacing uniformly defined in the full computational domain.  

Using this treatment, the time increment is also maintained to be greater than some 

critical value.  The numerical procedure of the boundary node switching is briefly 

explained with Figure 3. 5.  At time t=t, the boundary node is assumed to be node i 

( Figure 3. 5 upper panel), and the boundary moves rightward with time.  At t+Δt, the 

spacing between node i and its neighbor node i+1 becomes smaller, but is still more than 

Δx0/2 (Figure 3. 5 middle panel).  In this case, the boundary node is not switched with the 

other node.  At t+2Δt, the spacing between i and i+1 should be less than Δx0/2 if i remains 

as the boundary node.  By switching the boundary from node i to i+1, the minimum 

spacing is kept greater than Δx0/2 (Figure 3. 5 lower panel). 

In the actual numerical implementation, the ALE formulation [55] is adopted to 

compute variables on switching nodes.  Using the ALE form, the governing equations in 

the general form (eq.(2.3.1)) are represented by 

   Sa
a

 gridext vv
dt

d 
 (3.2.1) 

where vgrid denotes the velocity of the grid point which is available only when the 

switching of boundary nodes takes place. 

 a
aa





 gridv

tdt

d 
 (3.2.2) 

In the case shown in the lower panel of Figure 3. 5 , vgrid is defined at node i as 

the velocity to return to the original regular interval and on i+1 as the velocity to translate 

from the regular interval to the boundary wall. The CIP method is modified to be able to 

handle irregular spacing and applied to solve eq.(3.2.1) with operator split methodology.  

Irregular grid allocation is also considered in the implementation.  The cut cell approach 

is adopted for this purpose.  A 9-point Laplacian (see i.e. appendix of [41]) is used as a 

discretization of the Laplacian term in the phase-field equation in order to avoid an 

orientation dependency.  However, the discretization is derived with a uniform spacing in 
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the x and y directions, and it is impossible to construct the 9-point Laplacian with 

irregular spacing (the formulation for the case Δx0≠Δy0 is possible, but the formulation for 

irregular spacing within the same direction is impossible).  For that reason, 5-point 

Laplacian with irregular spacing is used as a discretization only for the boundary nodes.  

The form is given by 

   ijijijjijiij DCBADCBA    1111

2
 (3.2.3) 

for the Laplacian at node (i,j) on Cartesian grids.  Coefficients from A to D are 

specified as 
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
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
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




 (3.2.4) 

∆x1=xi-xi-1, ∆x2=xi+1-xi, ∆y1=yj-yj-1, ∆y2=yj+1-yj are nodal spacing around node (i,j). 

Since the semi-implicit ADI scheme is used to solve the heat equation, irregular spacing 

is considered through the modification of coefficient matrix. 

3.2.2 Model validation 

The following validation is designed to examine the performance of the boundary 

node switching treatment. A series of 1280x640 computational meshes are defined as a 

full computational domain, and a 640x640 activated computational domain is created on 

the leftmost side of the full domain as shown in Figure 3. 6 upper panel.  A solid seed 

(ϕ=1 is assigned inside the seed, otherwise ϕ=-1) is allocated at the middle of the left wall 

of the activated domain.  The parameters D=3, d0/W0=0.185, ε=0.05, and Δ=0.55 are 

chosen for the validation.  The flux free boundary condition is imposed on whole 

boundaries of the activated domain throughout the simulation.  The activated domain is 

translated  rightward with a constant speed vdomain (Figure 3. 6 lower panel), i.e. 

vext=vdomain, and no convection in the liquid melt is assumed.  Thus, the solid seed evolves 
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its dendrite structure within a moving computational domain.  Every 50 iterations of the 

phase-field and heat equations, the activated computational domain is translated to 

rightward with 0.05∆x based on eq.(3.2.1).  The tip velocity and the translation speed of 

the activated domain are almost comparable. 

Figure 3. 7 shows the phase-field contours (a) at initial state, (b) without, and (c) 

with activated domain motion at 100,000 time steps of phase-field simulation (the 

activated computational domain travels 100∆x from the left edge of the full domain).  

The gray region in the figure represents the deactivated computational domain where no 

calculation is performed.  Basically, there is no difference in terms of computational 

settings of figure (b) and figure (c) except for the motion of the computational domain; 

the outlines of the dendrite for both conditions should be equivalent.  Figure 3. 8 plots a 

comparison of the computed ϕ=0 contours with (solid line) and without (dashed line) 

motion for the activated computational domain (overlapped by matching both centers of 

dendrite).  No significant differences are observed between two outlines.  Although the 

numerical treatment is relatively simple, the phase-field simulation of solidification is 

performed under the motion of the computational domain. 

3.3 Numerical Model of Thermal Noise 

The side branches on the main dendirtic structure are generated by the selective 

amplification of the fluctuated interface.  The main source of the fluctuation of the 

interface is thermal noise.  Karma et al.[59] developed the phase-field model of dendritic 

sidebranching with thermal noise.  In their study, since the interface noise is assumed to 

be negligible compared to the bulk noise, an introduction of the thermal noise term 

through bulk terms in the phase-field and heat equation is justified.  The governing 

equations are given by  
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where ζ and q denote non-conserved and conserved noise, respectively.  Terms 

related to convection and anisotropy are omitted here for simplicity.  Fluctuations of the 

noise are assumed to follow the Gaussian distribution whose mean variations are defined 

by 
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where m=x,y, n=x,y for the two dimensional case. The terms δ(r-r’) and δ(t-t’) 

denote Dirac delta functions.  The following relation is assumed for constants Fϕ and Fu. 

 uJFF    (3.3.3) 

where J=16/15 is a constant obtained by the solvability integral for the function 

p(ϕ)=ϕ[59].  In order to implement the noise terms, eq.(3.3.2) is rewritten by the 

following discrete forms. 
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Absolute values of variation of those noise terms are then given by 
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Theaussian distribution of the noise terms are generated by the Box-Muller 

transform method [65] which is able to produce normal random values.  First, two 

uniform random values Rn1  and Rn2 where 0≤Rn1≤1 and 0≤Rn2≤1 are generated.  Then, 

Box-Muller transform is performed by the following equations.  
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T1 and T2 are normal random numbers which lie in the normal distribution [0,1] 

and are independent on each other.  For instance, Figure 3. 9 shows the distributions of 

normal random values by the Box-Muller transformation with three different numbers of 

sampling data and an exact normalized Gaussian distribution, i.e. 
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(3.3.7) 

where p(x) is a probability density function, x is a support.  Here, the mean x0 and 

variance are set to be zero and one, respectively.  Larger sampling numbers produce a 

closer profile to an exact Gaussian distribution, but the profiles computed by the Box-

Muller transformation give closer profile to the normal distribution for any numbers of 

sampling data.  Using this method, the final forms of noise terms in the actual 

implementation are represented by 
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Here, the mean value of ζ and q are set to be zero.  As pointed out in [44] and [59], 

the fluctuation in the phase-field equation is small, so only thermal noise q is 

implemented through a source term in the ADI method.  Figure 3. 10 represents the 

phase-field contour computed by the above phase-field model with a thermal noise term.  

For the example 1200x800 nodal points are used, and D=3, d0/W0=0.185, ε=0.06, Δ=0.55, 

and Fu=1.0e-3 are defined in the calculation.  Fluctuations are observed on the interface 

of the dendrite. 
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3.4 Single Dendrite Growth under Compression Loading 

In this section, simulations of single dendrite growth under compression loading 

are presented.  (i) Dendrite structure with elasto-perfectly-plasticity model; (ii) (i) with 

including thermal noise; and (iii) (ii) but with elasto-perfectly-viscoplasticity model are 

of interest in this section.  For all simulations, 1200x800 meshes are prepared as a full 

computational domain.  Initially, a solid seed is located at the center of the computational 

domain, and it freely evolves its dendritic structure until dendrite tips reach to both top 

and bottom surfaces under the flux free boundary condition.  Then,  both surfaces move 

such that they apply compression loading to the dendritic structure (Figure 3. 11).  

Mechanical boundary conditions are imposed through nodal velocity. 

3.4.1 Example 1 

The elasto-perfectly-plasticity constitutive model is applied to represent 

mechanical response of the dendritic solid structure.  For phase-field and temperature 

analysis, values of Δt’=0.01, Δx’=0.4, d0/W0=0.185, ε=0.015, D=3.0, and Δ=0.55 are 

assigned, and the flux free boundary condition is used.  For the MPM structural analysis, 

values of E=50.0[GPa], ν=0.33, ρ=7.8e3[kg/m3], and ζY=5.0[MPa] are used.  These 

properties are typical values for metal at higher temperature (i.e. [58] and see appendix 

B), and no specific material is not assumed here. The dimensionless equation (see 

appendix B) is solved for the MPM analysis. 

Figure 3. 12 shows contours of the phase-field (the left most panels), von Mises 

stress (panels in the second column from the left side), equivalent plastic strain (panels in 

the third column from the left side), and crystallographic orientation (the rightmost 

panels) at initial state (upper panels), at 5% compression (panels in the second row), at 

10% compression (panels in the third row), and at 15% compression (lower panels).  

Since contact takes place at the dendrite tips located at the top and bottom, plastic strain 

starts evolving from that region, i.e. contour of plastic strain at 5% compression.  Then, 
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gradually the center region of the dendrite has stress as the imposed deformation becomes 

larger. 

3.4.2 Example 2 

The fluctuated interface is incorporated through the thermal noise term described 

in 3.3 for the sake of examining the capability of our numerical methodology to handle 

more complex geometries.  Mechanical properties and parameters used in the MPM 

analysis and phase-field simulation are the same as those in example 1 except for ε=0.06 

and Fu=1.0x10
-3

 .  Figure 3. 13 shows a sequence of the simulation.  The illustrated 

contours are the same as those seen in example 1.  Yielding initially occurs at the contact 

portions of the dendrite with the upper and lower walls, and then the yielding part moves 

toward the center of the dendrite, i.e. Mises stress and plastic strain contour at 30% 

compression.  This is same result as presented in example 1.  Orientation of the dendrite 

is varied by the imposed compression.  For instance, the variation is caused by the 

clockwise rotation around the right hand side of the dendrite tip on the upper wall.  The 

deformation is reasonable considering Poisson’s effect due to the compression (the solid 

portion is expanded and flows rightward whereas the solid on the wall is fixed on it).  

Interestingly, the magnitude of the orientation change (see contours of orientation since 

initially the orientation is all set to be zero) depends on that of the plastic strain.  This 

indicates that the plastic flow might be the major source of the orientation change within 

the single dendrite structure.    Figure 3. 14 shows the computed ϕ=0 contours of the 

dendrites with (red line) and without (black line) deformation at 10, 20, and 30% 

compression.  Outlines of the laterally extended arms are almost same regardless of 

deformation since their contribution on load bearing is small.  On the contrary, the 

vertically extended arms are compressed and get thick as the deformation becomes larger.  

As shown in Figure 3. 15, stress concentrations are computed at the necked part of the 
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complexly fluctuated dendrite structure.  From this viewpoint, stresses and strains should 

be correctly computed within the evolving dendritic structure.   

3.4.3 Example 3 

The visco-plasticity constitutive model is introduced in addition to the model 

presented in example2. The value of ηvisc (viscosity coefficient) is set to be 100 (see 

appendix B for the parameter determination), otherwise all mechanical properties and 

parameters are the same as those of example 2. The characteristics of the dendrite 

deformation are almost same as the characteristics observed in the elasto-perfectly-

plasticity model (Figure 3. 16).  The computed ϕ=0 contours of the elasto-perfectly-

plasticity model (solid line) and the elasto-perfectly-viscoplasticity model (red line) are 

presented in Figure 3. 17.  There are small differences between results of the two 

constitutive models.  For instance, Figure 3. 17 shows a close-up image of the rectangular 

area (blue line in the same figure).  Smaller deformation or plastic flow is observed for 

the viscoplasticity model since the viscous effect gives higher flow stress than the static 

case.  The basic deformation state should be determined by the flow law applied to the 

constitutive model. 
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Figure 3. 1 Schematics of the insertion and the relocation of material points associated 
with an advanced interface due to solidification; (a) Case 1: a background cell 
does not have preexisting material points.  Material points are newly inserted 

at the intersections of two sides of the cell with the interface; (b) Case 2: a 
background cell has four preexisting material points (left panel).  The closest 
preexisting point to the intersections of the interface is merged with the newly 

inserted point (right panel). 

 

Figure 3. 2 Validation of numerical procedure of solid structural model update; (a) Phase-
field contours associated with ϕ=0 line contour at initial state (left panel), 
intermediate time step (center panel), and final time step (right panel); (b) 

Allocation of material points. 
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Figure 3. 3 A time history of total mass of the solid phase computed from phase-field on 
the background nodes (solid line) and the mass associated with the material 

points (dashed line with cross shape plots) 
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Figure 3. 4 A schematic of computational domain of phase-field and heat equation; A full 
computational domain is composed of an activated and a deactivated sub-

domains. 

 

Figure 3. 5 Schematics of numerical procedure of boundary node switching; node i is 
assumed to be the boundary node at t=t.  If the spacing between the boundary 

node and its neighbor node i+1 is less than Δx0/2, the boundary node is 
switched to i+1 (lower figure). 
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Figure 3. 6 Schematics of a validation of boundary node switching procedure; upper 
panel: initial conditions.  640x640 activated domain is placed within 

1280x640 full computational domain; lower panel: boundary conditions of 
phase-field and heat equations.  Activated domain is translated rightward with 

evolving solid seed. 
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Figure 3. 7 Phase-field contours of validation problem of moving wall treatment;  Gray 
region represents deactivated computational domain where no calculation is 

performed; (a) at initial state; (b) at after 100,000 steps of phase-field 
simulation without an activated domain motion; (c) at after 100,000 steps of 

phase-field simulation with an activated domain motion 

 

1-1 0

Phase-fieldDeactivated domainActivated domain

(a)

(b) (c)



www.manaraa.com

103 
 

 

1
0
3
 

 

Figure 3. 8 A comparison of computed ϕ=0 contours with (solid line) and without motion 
of activated computational domain (dashed line). 

 

Figure 3. 9 Distributions of normal random values by Box-Muller transformation with the 
different number of samples.  For a symmetry, only half of the distribution is 
presented.  An exact Gaussian profile (solid line), profile obtained by Box-

Muller transformation with 1000 data samples (dotted line with cross-shaped 
plots), with 10,000 data samples (dotted line with circular plots), and with 

100,000 data samples (dotted line with square plots) are compared. 
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Figure 3. 10 Phase-field contour computed by phase-field model with thermal noise. 
(D=3, d0/W0=0.185, ε=0.06, Δ=0.55, and Fu=1.0e-3) 

  

 

Figure 3. 11 A schematic of phase-field dendritic solidification simulation with externally 
applied compression loading; Left panel: initial and boundary conditions of 

phase-field solidification simulation.  A solid seed freely evolves its dendritic 
structure until dendrite tips reach to upper and lower boundaries; Right panel: 

after the free dendrite growth, upper and lower walls move such that the 
dendritic solid structure is compressed. 
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Figure 3. 12 Phase-field simulation of dendritic solidification under compression loading; 
Left panels: phase-field contours; second panels from the left: von Mises 
stress; third panels from the left: equivalent plastic strain; right panels: 

crystallographic orientation; Upper panels: initial state; panels of the second 
row: 5% compression; panels of the third row: 10 % compression; and lower 

panels: 15% compression.  Black parts denote walls. 
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Figure 3. 13 Phase-field simulation of dendritic solidification under compression loading 
with thermal noise (Fu=1.0e-3); Left panels: phase-field contours; second 

panels from the left: von Mises stress; third panels from the left: equivalent 
plastic strain; right panels: crystallographic orientation; Upper panels: initial 
state; panels of the second row: 10% compression; panels of the third row: 

20 % compression; and lower panels: 30% compression.  Black parts denote 
walls. 
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-0.4 0.40 1.20 5E+06-1 1



www.manaraa.com

107 
 

 

1
0
7
 

 

Figure 3. 14 Comparisons of computed ϕ=0 contours of evolving noised dendrite with 
(red line) and without (black line) compression loading at 10% (left panel), 
20% (center panel), and 30% (right panel) compression; only a right half 

domain is presented. 

 

Figure 3. 15 Close-up image of dendrite under compression loading (right panel); 
rectangular region presented in the left panel (phase-field contour) is 

magnified and Mises stress is shown. 
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Figure 3. 16 Phase-field simulation of dendritic solidification under compression loading 
with thermal noise (Fu=1.0e-3); elasto-perfectly-visco-plasticity constitutive 
model is applied; Left panels: phase-field contours; second panels from the 

left: von Mises stress; third panels from the left: equivalent plastic strain; right 
panels: crystallographic orientation; Upper panels: initial state; panels of the 
second row: 10% compression; panels of the third row: 20 % compression; 

and lower panels: 30% compression.  Black parts denote walls. 

Phase-field: Von Mises stress [Pa]: Equivalent plastic strain: Orientation:
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Figure 3. 17 Comparisons of computed ϕ=0 contours at 30% compression for elasto-
perfectly-viscoplasticity (red line) and elasto-perfectly-plasticity (black line) 

constitutive model; a rectangular area indicated by thick blue line is magnified. 
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CHAPTER 4 

PHASE-FIELD MULTIPLE DENDRITIC SOLIDIFICATION 

SIMULATION WITH APPLIED DEFORMATION 

As stated in chapter 2, the computation of multiple dendrite growth is complicated 

by interfacial energies associated with the solid-liquid interface and grain boundaries.  In 

this chapter, a numerical model to handle multiple dendrite growth is incorporated into 

the model developed in chapters 2 and 3.  An explanation of the model is briefly 

presented and simulations of multiple dendrite growth with externally applied 

deformation are demonstrated. 

4.1 Introduction 

Each dendrite crystal or grain has its own crystallographic orientation which 

originally reflects its lattice structure and corresponds to its preferable growth direction.  

As multiple solid grains grow and the solid fraction increases, grain impingements take 

place.  If the grains have different orientations, an orientation mismatch may occur 

around the impinging region and results in the formation of grain boundaries.  Since the 

grain boundary separates two regions of the same crystal structure but of different 

orientation, the lattice structure in the region is incomplete.  From this viewpoint, the 

grain boundary is considered to be a lattice defect (i.e. dislocations) Excess energy should 

be required to introduce the defects within some material.  The final configuration of the 

macro grain structures would be determined by the minimization of free energy of the 

system of concern.  In some case, a relaxation process to reduce orientation mismatch 

will occur, i.e. a grain rotation, grain coarsening, and grain boundary migration, while in 

other cases a wetting grain boundary (does not form grain boundary) will appear.  Some 

energetic treatments should be necessary to simulate the solidification phenomena with 

multiple grains. 
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The phase-field model used in chapter 3 only considers a change of growth 

direction (orientation angle change) due to externally applied deformation, but does not 

include the effect of orientation mismatch on the solidification process.  The orientation 

mismatch is considered to be an energy penalty (excess energy) in terms of the free 

energy of the system from the above discussion, so an appropriate model should 

incorporate a free energy term to simulate multiple dendrite growth with externally 

applied deformation.   

Basically, two distinct approaches are available for the phase-field solidification 

simulation with multiple grains.  One is the so-called multi-phase-field model, i.e. [51] 

and [52].  In this model, a set of order parameters (i.e. N parameters for N grains) is 

introduced, where each parameter represents the phase of each grain (the free energy 

function is modified to have N minima in the bulk free energy term).  By doing so, N 

distinct crystallographic orientations are assigned to N grains, so that the energy penalty 

term due to orientation mismatch among grains can be included in the model.  However, 

the restriction of the model is that the finite number of grains and distinct crystallographic 

orientations are allowed to be set.  In this thesis, self contact within a single crystal is of 

interest in addition to the inter-dendritic impingements. Therefore, continuous variation 

of orientation is anticipated due to applied deformation.  In this sense, the multi-phase-

field model is not suitable to handle the situation. 

Another model is called the KWC (Kobayashi-Warren-Carter) model [50] or 

polycrystalline phase-field model.  An order parameter which represents the 

crystallographic orientation is introduced to the model.  Since an orientation mismatch 

should be expressed by the spatial gradient of the crystallographic orientation, i.e.  , 

the energy penalty term associated with the orientation mismatch is assumed to be 

proportional to the gradient.  The formation of the grain boundary is computed through 

an interaction term between the phase-field and orientation (mismatch).  The model is 

capable of handling a continuous variation of orientation field, thus it will be a suitable 
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choice to include the effect of multiple grain impingements on our numerical 

methodology. 

4.2 Evolution Equations of KWC Phase-field Model 

In this section, the formulation of the KWC phase-field model [24] is briefly 

explained.  The crystallographic orientation  tx,


  at a given location and time is used in 

the same way as the preceding section. 

4.2.1 The form of free energy 

The total free energy of the system F of the KWC phase-field model is given by 

the following equation. 

         dVjshTfF  














2
22
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,,

2





  (4.2.1) 

The first term on the R.H.S. of the equation is an anisotropic surface energy term 

whose magnitude is controlled by εϕ  where εϕ has the same meaning as the interface 

thickness W(n) in chapter 2, but with a different dimension  (εϕ
2
 has a dimension of 

[Energy density. Length
2
]).  The following form is considered for the surface energy term. 

        21, cc  (4.2.2)    (4.1.2) 

where the function δ has N-fold symmetry, i.e. 

  
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








N

2
 (4.2.3) 

Angle φ is the angle between a fixed reference frame, i.e.the x-coordinate axis, 

and the direction normal to the interface. The definition is same as the defination 

presented in chapter 2, i.e. φ=tan
-1

(ϕy/ϕx).  Due to the representation in eq.(4.2.2), an 

anisotropy is imposed depending on the crystallographic orientation α.  The specific form 

of eq.(4.2.2) is defined to be 

 
       4cos1, 0  (4.2.4) 
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 The second term on R.H.S. of eq. (4.2.1) is again the bulk free energy density.  

Since there should be two stable phases, a double-well potential term with a temperature 

dependent term is applied in the same way that the phase-field model was used in 

chapters 2 and 3. 

    


 pf
aa

Tf sol









32428
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2422

 (4.2.5) 

The coefficient a denotes the depth of the double-well, and a
2
 has the dimension 

of energy density.  The following forms of fsol and p(ϕ) (monotonically increasing 

function) have been suggested. 
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The type I function gives the same expression as our phase-field equation 

mentioned in the chapter 2 in case orientation related terms are excluded. 

The third and fourth terms of eq.(4.2.1) are allowed to have a grain boundary, i.e. 

0 , and grain motion, respectively.  The coefficients s and ε affect the strength of 

coupling between ϕ and α, and ε also relates to the thickness of grain boundary.   The 

functions h(ϕ) and j(ϕ), are monotonically increasing functions with respect to ϕ such that 

α(x,t) vanishes in the bulk liquid phase, i.e. ϕ=-1.  In the polycrystalline phase-field 

model, the following functions have been proposed. 

    
 2

4

1 



 jh  (4.2.7) 
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4.2.2 Evolution equations of ϕ and α 

The evolution equations of ϕ and α are obtained from the variational equations of 

the free energy function F(ϕ, α) using the same  procedure used for obtaining the phase-

field equation for single dendrite growth in chapter 2 (rate change of ϕ and α is assumed 

to be proportional to their gradient flow direction).  In the case of an isotropic surface 

free energy, i.e.  , the following evolution equations can be obtained. 
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For coefficients Q and P, the following forms are proposed. 

     ww eewP  wherePP

Q
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

1,

1

 (4.2.10) 

where μ and β denote coefficients, μ=10
3
 and β=10

5
 are used in this study.  The 

function P controls the relaxation time of the orientation evolution in the bulk solid grain, 

i.e. 0  and the grain boundary region.  A larger μ corresponds to a smaller 

diffusivity of orientation; which implies smaller grain rotation, and vice versa.  In 

addition to the above evolution equations, temperature is computed by the heat equation 

in the same form as the equation introduced in chapter 2. 

 
t
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2

12
 (4.2.11) 

Basically, a symmetric boundary condition is imposed on heat equation, and has 

the same meaning as an adiabatic boundary condition.  Since the computational domain 
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has finite size, the released latent heat due to phase change is accumulated in the domain, 

thus the domain is heated.  At some moment, the dendrite growth would be suppressed 

because the latent heat is not sufficiently removed from the solidification front due to the 

temperature increase.  In order to obtain an equilibrium multiple solid grain structure, a 

cooling term is introduced to eq.(4.2.11), i.e. 

  
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





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
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0

2

2

1
c

t
D

t
 (4.2.12) 

where c is the coefficient for cooling effect, and ζ0 (<0) is the reference 

temperature. The cooling term is activated several time steps from the beginning of the 

simulation. 

4.3 Validation and Example of KWC Phase-field Model 

4.3.1 Validation: formation of dihedral angle between 

impinging two grains 

Some tips for an actual numerical implementation (model parameter 

determination, a solution methodology of an evolution equation for orientation, and one-

dimensional validation problem) are described in appendix C.  In this section, a two-

dimensional simulation of impinging two grains is performed as a validation of the 

numerical program of the polycrystalline phase-field model presented in this thesis.  

Two-dimensional full equations (eq.(4.2.5), (4.2.6), and (4.2.8) or (4.2.9)) are to be 

solved, and a dihedral angle ξdi formed between two grains at the equilibrium state is 

examined. 

Before proceeding with the numerical simulations, analytical solutions of the 

dihedral angle in case of ε=0 limit are briefly mentioned (see [24] for more mathematical 

details) first.  The energy associated with the grain boundary is calculated by integrating 

free energy density over the grain boundary region.  The form of the equation is 
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where ϕmin is the phase-field ϕ at the center of the grain boundary, and is 

represented by 

 
c









2
1min  (4.3.2) 

The term Δαc is the critical angle mismatch which is defined by 

 
s

a
c


   (4.3.3) 

Since the phase-field is allowed to have a value in the range of -1≤ϕ≤1, a grain 

boundary is not formed if Δα>Δαc in the KWC phase-field model (wetting boundary).   If 

the system has a wetting boundary, an usual solid-liquid interfacial energy γls should be 

computed by an integration of free energy density over the diffuse interface region in the 

absence of orientation mismatch (Δα=0).   

 
6




a
ls   (4.3.4) 

From eq.(4.3.1) and (4.3.4), the following insight into the KWC phase-field 

model is obtained.  In order to create a grain boundary, a pair of solid-liquid interfaces 

which are impinging each other should be necessary, with the energy cost to create the 

two interfaces  given by 2γls=aεϕ/3 from eq.(4.3.4).  On the contrary, the energy required 

to form grain boundary at Δα=Δαc is represented by γbc(Δαc)=aεϕ/3 from eq.(4.3.1).  The 

energy cost to form a wetting boundary and the energy cost to form a grain boundary are 

balanced at Δα=Δαc.  Therefore, forming wetting boundary is favorable if Δα>Δαc in the 

model.  The dihedral angle ξdi observed at a triple point shown in Figure 4. 1 is given by 

the following Young’s equation (force balance at the triple point). 

 
ls

bcdi





22
cos 








 (4.3.5) 
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Eq.(4.3.1), (4.3.4), and (4.3.5) give the following analytical expression of the 

dihedral angle ξdi in the case of ε=0 limit, and the dihedral angle is compared with the 

one obtained by numerical simulation. 

 









 

ls

bc
di






2
cos2 1  (4.3.6) 

For the numerical simulation, two grains are placed next to one another, and ϕ=1 

and α=±Δα/2 are assigned inside the grains. Values of ϕ=-1, α=0 are assigned to liquid 

phase as initial conditions (Figure 4. 2 (a) and (b)). The value ζ=0 is imposed as the 

initial temperature.  The method of parameter determination used by Warren et al. [24] is 

adopted such that the dimensionless model parameters are set to be 

1.0',53.0~,94.0~,0.1~    s (diffuse interface thickness )~(0 W  and relaxation 

time τ0 are used for characteristic length and time scale).  The operation conditions are set 

such that ε0=0.0, d0/W0=0.185, Δx/W0=0.4, and D=3.0.  Since the initial curvature is 

defined without considering Gibbs-Thomson effect, the system tries to establish new 

equilibrium state.  Some parts of the grain melt back and cool the interface region until 

the temperature of the region and the melting point determined by the interface curvature 

become equivalent. 

In order to compare the numerical result with its analytical solution given by 

eq.(4.3.6), the interface curvature is measured by fitting two true circles to ϕ=0 interface 

contours at 300000 steps (an equilibrium of the system is assumed to be established at 

this stage).  Using the obtained centers of the two circles and radii, a dihedral angle is 

geometrically computed.  Figure 4. 3 shows the phase-field contours for four different 

orientation mismatches (Δα/Δαc=0.19, 0.38, 0.57, and 1.5).  As the mismatch becomes 

larger, the dihedral angle becomes smaller.  For instance, a wetting boundary is observed 

in the case of Δα/Δαc=1.5.  Figure 4. 4 plots the dihedral angles as a function of 

orientation mismatch.  The analytical solution given by eq.(4.3.6) is indicated by a solid 
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line whereas the numerical solutions are represented by square dots.  The dihedral angle 

decreases with increasing orientation mismatch, and the tendency is due to a dependency 

of the grain boundary energy on the orientation mismatch represented by eq.(4.3.1).  

Since the analytical solution is computed under the assumption of ε=0, there is a 

difference between the analytical and numerical solution, but the polycrystalline phase-

field model represents the behavior of grain boundary formation well.  The upper panel 

of Figure 4. 5 shows the relationship between orientation mismatch and grain boundary 

energy which is normalized by the solid-liquid interfacial energy 2γls.  In the range of 

small orientation mismatch, the grain boundary energy has an almost linear dependency 

on the orientation mismatch.  The dependency is the same as the dependancy analytically 

obtained by Read-Shockley [69].  As previously mentioned, if the orientation mismatch is 

more than its critical value Δαc, the grain boundary energy is maintained at 2γls  (since 

less energy is required to form a wetting boundary in the state).  In the lower panel of the 

same figure, the experimental results of the relationship between orientation mismatch 

and grain boundary energy for tin and lead are plotted [70].  The dependency of each 

material qualitatively agrees well with the dependency obtained by numerical simulation 

(upper panel of the same figure).  Since γls depends on the material, the value should be 

adjusted by a parameter a and εϕ in eq.(4.3.4) if a specific material is considered. The 

term Δαc is also shown in the figure as the angle at which the boundary energy converges 

to a constant value. That value can be controlled by the parameter s in eq.(4.3.3) if we 

want.  In this thesis,a specific material is not assumed, so the parameter determination 

proposed by Warren et al. is  adopted (see appendix C for more details). 
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4.3.2 Example: isothermal impingement simulation of four 

grains 

In the preceding section, the basic characteristic of the polycrystalline phase-field 

model are examined, and it is shown that the model can qualitatively present the actual 

behavior of the grain boundary, i.e. the relationship between orientation mismatch and 

grain boundary energy.  In this section, the impingements of four grains are simulated to 

form a complete solid grain structure. 

As shown in Figure 4. 6  for equally sized circular grains are allocated to four 

corners of calculation domain whose size is 201x201.  The parameter settings are the 

same as those in the last section, except that a constant temperature ζ=-0.1 is imposed on 

the system throughout the simulation.  Flux free boundary conditions are imposed on all 

variables. 

Three different computational settings are investigated (Figure 4. 6 (a)~(c)).  For 

case (a), the left two grains have α=0 whereas right two grains have α=π/8.  No 

orientation mismatch exists between left two and right two grains, so they are merged 

together.  As a result, a planar grain boundary is formed in the vertical direction.  For 

case (b), the left two grains have the same α=0, and they are merged together.   Contrary 

to example a, an orientation mismatch Δα=π/4 exists between right two grains, so a grain 

boundary is formed between the two grains.  Since three different orientations coexist in 

the system, a dihedral angle is formed at the triple junction.  For case (c), the three 

different orientations used in case (b) are imposed on the system, but the upper left and 

lower right grains have the same orientation.  This results in a merged grain structure of 

those two grains.  In this way, a multiple grain structure is formed through the 

interactions of orientation mismatch among the grains by the polycrystalline phase-field 

model. 
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4.3.3 Example: non-isothermal simulation of multiple grain 

impingements 

For a more practical application, in addition to the model used in the last section, 

thermal diffusion is included through the heat equation. The computational domain is 

expanded to 1201x1201, and 50 seeds are randomly allocated in the domain.  

Crystallographic orientation α is also randomly assigned to each solid seed such that the 

value stays within –π/4≤α≤π/4.  The same model parameters as the last section are used 

except ε0=0.05 and Δ=0.55 are applied to form the dendritic structure.  In this calculation, 

a cooling term in (4.2.12) is activated after t/τ0=50. The values c=10and ζ0=-0.2 are used 

to obtain a completely solidified grain structure.  The flux free boundary condition is 

adopted. 

Figure 4. 7 shows a series of the simulation.  At an early stage of the simulation, 

each solid seed freely evolves its structure, and then impingements between the grains 

take place.  Depending on the orientation mismatch, grain boundaries are formed among 

grains.  As the simulation goes, the coarsening process is also observed.  Grain 

boundaries formed by small orientation mismatches typically vanish by matching the 

orientation of one of the grains with the orientation of its neighbor, so that the number of 

grains reduces with time.  The numerical program of the polycrystalline phase-field 

model proposed in this thesis should work with a larger system (see appendix C for a 

simulation of multiple grain growth with thermal noise).   

4.4 Modeling of the Mechanical Behavior of the Grain 

Boundary 

Mechanical connections among grains, i.e. bridging, are determined depending on 

the state of the free energy of the system, and have a considerable effect on the relative 

motions among the grains.  For instance, if two adjacent grains form a bridge between 

them, the grains behave as a single solid structure.  On the contrary, individual motions 
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are expected for each grain when a wetting boundary is formed between two.  A grain 

boundary in the polycrystalline phase-field model is represented by the phase-field as a 

value in the range of -1<ϕ<1 at the equilibrium state.  Since the motion of the liquid 

phase is not computed in this thesis, the phase-field dependent mechanical properties 

(assign mechanical properties of solid phase for ϕ=1 and those of liquid phase for ϕ=-1.  

Otherwise mechanical properties in between solid and liquid phase is imposed for -

1<ϕ<1) do not provide a good representation of the grains at the grain boundary.  In this 

thesis, the simply mechanical properties of solid phase are imposed if ϕ≥0, otherwise no 

contribution of mechanical response is assumed for the case where ϕ<0. 

The introduction of anisotropic constitutive behavior into the MPM should be 

possible (i.e. [32]), and would be a future work. 

4.4.1 Test simulation of examining mechanical behavior of 

a grain boundary 

A simple test simulation to check the mechanical behavior of a grain boundary is 

examined.  No anisotropy (ε0=0.0) is assumed, and 1.0',53.0~,94.0~,0.1~    s , 

d0/W0=0.185, Δx/W0=0.4, and D=3.0 are set as operation conditions.  The flux free 

boundary condition is applied to the whole boundary.  Initially, a planar solid is placed in 

the computational domain (401x1201 grid nodes), and the region is separated into two 

sub-domains where each sub-domain has its own orientation (Figure 4. 8 upper panels).  

In one case (a), an orientation mismatch is imposed such that Δα/Δαc=1.39.   In case (b), a 

lower orientation mismatch Δα/Δαc=0.13 is assigned.  The solid region is exposed to the 

undercooled liquid (Δ=0.55), thus it evolves upward while forming a grain boundary.  As 

shown in the lower panels of the same figure, the grain boundary formed in case (a) has 

ϕ<0 whereas ϕ>0 is observed in case (b).  Therefore, the solid region in case (a) should 

behave as two individual solid parts while in case (b) it deforms as one unified solid 

structure.  As shown in Figure 4. 9, a forced displacement is imposed on the left and right 
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walls such that grains are pulled apart.  The sliding boundary condition is used on the 

bottom wall. 

Figure 4. 10 shows the phase-field contours of case (a) and (b) at the initial state 

(upper panels) and at 15% tensile deformation (lower panels).  For case (a), grains are 

pulled apart while evolving their solid structure.  On the contrary, solid grains behave as 

one solid in case (b).  In this way, the grain boundary is assumed to be a complete solid 

or complete liquid depending on its phase-field value in this thesis.  

4.5 Multiple Grain Growth under Applied Deformation 

Solid deformation analysis is coupled with the polycrystalline phase-field model 

in this section.  First, multiple globular growths under shear deformation are simulated as 

a relatively simple test calculation.  Then, the deformation analysis of dendrite structures 

with fine side-branches is presented. 

4.5.1 Example 1: multiple globular grain growth under 

imposed shear deformation 

4.5.1.1 Calculation settings 

As shown in the upper panels of Figure 4. 11 , 14 solid seeds are initially 

allocated in a zigzag alignment.  For each seed, the crystallographic orientation is 

randomly assigned.  No anisotropy (ε0=0.0) is assumed, and 

1.0',53.0~,94.0~,0.1~    s , d0/W0=0.185, Δx/W0=0.4, and D=3.0 are specified 

as model parameters.  The flux free boundary condition is used.  First, the solid seeds 

evolve their structure without deformation until some bridging is formed among them 

(Figure 4. 11 lower panels).  Although the initial allocation of seeds is quite simple and 

regular, a complex multiple grain structure appears even at this stage since angle 

mismatches among grains are different depending on their location.  After the initial 
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evolution of the solid seeds, shear deformation is imposed to the solid structure through 

enforced displacement of the top and bottom walls (Figure 4. 12). 

4.5.1.2 Results 

Figure 4. 13 illustrates Mises stress (left panels) and the equivalent plastic strain 

(right panels) at 0% (upper panels), 10% shear (panels in the second row), 20% (panels in 

the third row), and 40% shear (lower panels).  The deformation concentrates on narrow 

portions of the solid structure at the early stage, i.e. at 10 and 20% shear; the portions 

have a relatively higher plastic strain than the other part of the solid structure.  After the 

remaining liquid parts residing among grains are solidified, i.e. at 40% shear, traces of 

plastic deformation are found around the grains initially located in the middle row.  A 

remarkable effect of the applied deformation on the evolving grain structure is observed 

around the seed located at the rightmost side in the middle row.  As indicated in the 

magnified images of the region in Figure 4. 14, the seed is translated to leftward by the 

enforced displacement acting on the solid allocated on the lower wall which is connected 

to the seed.  Due to the translation, the liquid part allocated between the solid and its 

neighbor on the left side solidifies faster than it would solidigy in the case without the 

shear deformation, i.e. Figure 4. 17 upper panel.  Figure 4. 15 and Figure 4. 16 show the 

contours of the phase-field and crystallographic orientation as a function of time.   The 

imposed shear deforms the distribution of crystallographic orientation as well as the solid 

structure (phase-field) itself (see also Figure 4. 17 lower panel).  The simulation proves 

the impact of applied deformation on the evolving grain structure. 
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4.5.2 Example 2: evolving dendrites with thermal noise 

under imposed shear 

4.5.2.1 Calculation settings 

In order to show the capability of our methodology to handle more complex 

microstructure, a thermally fluctuated interface is introduced in this section.  Most of the 

model parameters are identical to those used in the example 1, but ε0=0.08 and Δ=0.8 are 

defined to form fine and complex side branching.  The setting of ε0 and Δ is unrealistic in 

the practical situation, so this problem is only for test purposes. 

First, three solid seeds are placed on the bottom wall, and their orientations are 

aligned with the coordinate axes.  Flux free boundary conditions are applied on the all 

boundaries for all fields.  The seeds initially evolved within the under-cooled melt until 

their dendrite tips reach to the upper wall.  Then, shear loading is imposed on the dendrite 

structure through enforced displacement on the upper and lower walls (Figure 4. 19). 

4.5.2.2 Results 

Contours of Mises stress (left panels) and equivalent plastic strain (right panels) 

as a function of time are presented in Figure 4. 20.  Since the noised dendrites have quite 

complicated solid structures, stress concentration is observed in the narrow portions of 

the dendrites.  As the result of the concentration of the deformation, plastic strain is 

accumulated in these portions.  Figure 4. 21 shows the phase-field (left panels) and 

crystallographic orientation (right panels) of the same simulation.  As the imposed 

displacement becomes larger, the orientations of vertically extended dendrites are 

changed by the bending motion.  The constraints of y-displacement on the moving walls 

might cause a relatively large rotation of the solid lying on the wall.  Variations of 

orientation within dendrites due to imposed deformation create mismatches of the 

orientations among the dendrites. 
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In the preceding simulation, the liquid portions that reside among dendrites are 

heated up due to latent heat released from the solid-liquid interface.  In order to obtain a 

complete solid structure, the cooling effect is incorporated to the simulation.  Figure 4. 22 

shows Mises stress (left panels) and the equivalent plastic strain (right panels). The 

deformation due to self-contact or interdendritic impingements is observed as well as the 

concentration of the deformation in the narrow portion of the dendrites.  Figure 4. 24 

shows the same contour of equivalent plastic strain at 30% shear as Figure 4. 22, but the 

range of the contour is magnified.  Plastic strain has been developed in the region of 

deformation concentration and impingements taking place. As shown in Figure 4. 23, 

once the liquid portions among dendrites are solidified (lower left panel), coarsening 

takes place among the grains where orientation mismatch exists (lower right panel).  As a 

result, some grain boundaries (although the boundaries are almost close to the solid 

phase) are formed within the solid structure which originally had uniform orientation 

field (Figure 4. 25). 

4.5.3 Example 3: evolving dendrite with thermal noise 

under imposed compression loading 

4.5.3.1 Calculation settings 

In this section, the same simulation as the preceding section is used but imposing 

compression loading is performed.  Model parameters are identical to those used in 

example 2. The symmetric condition is assumed for computational simplicity, thus only 

one quarter of the domain is actually solved as shown in Figure 4. 26.  A solid seed is 

initially placed at the lower left corner of the domain, and it evolves until the vertically 

extended dendrite arm reaches the upper wall.  Then, compression loading is imposed 

with the mechanical boundary condition presented in the same figure. 
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4.5.3.2 Results 

The complex dendrite structure is compressed while evolving its solid structure as 

shown in Figure 4. 27 (see i.e. phase-field contours).   As seen in example 2, plastic strain 

is mainly developed in the narrow portions of the dendrites and the parts where self-

contact taking place. The distribution of crystallographic orientation changes in time due 

to the deformation and relaxation process.  For instance, the side branches of the dendrite 

around the upper wall have own orientation angles at 5% since they behave as different 

grains.  However, those branches are connected together as a result of relaxation process 

on orientations, i.e. at 10%.  At 20% compression, the orientation mismatch still exists 

within the connected solid structure.  Numerical methodology developed in this thesis 

can describe the relaxation or coarsening process within the complex solid structure 

during deformation. 
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Figure 4. 1 A schematic of force balance at a grain boundary of two impinging grains 

 

 

Figure 4. 2 Initial condition of 2-D numerical simulation of two impinging grains; (a) 
phase-field; (b) orientation field. 
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ξdi

γbc

γlsγls
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Figure 4. 3 Phase-field contours of four simulations of two impinging grains at steady 
state; (a) Δα/Δαc=0.19; (b) Δα/Δαc=0.38; (c) Δα/Δαc=0.57; (d) Δα/Δαc=1.5; 
Contour lines indicate phase-field values ϕ=-0.8-0.8 in increments of 0.4. 

   

Figure 4. 4 A relation between angle mismatch Δα/Δαc and dihedral angle ξdi for 
analytical (solid line) and numerical result (square dots).Two-dimensional 

simulation of two impinging grains.  Left panel: phase-field contour of 
impinging grains (upper panel: Δα/Δαc=0.67; lower panel: Δα/Δαc=1.33) ; and 

right panel: relation between angle mismatch and dihedral angle 

1-1

(a) (b)

(c) (d)



www.manaraa.com

129 
 

 

1
2
9
 

 

 

Figure 4. 5 Grain boundary energy as a function of an orientation mismatch; Upper panel: 
numerical result (grain boundary energy is normalized by solid-liquid 

interfacial energy); Lower panel: experimental values obtained from the 
source indicated below. 

 Source: Gottstein G. and Shvindlerman L.S. Grain boundary migration in metals 2
nd

 
edition. 2010, CRC press. 
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Figure 4. 6 Simulation of impinging four circular grains; panels in top two rows: 
orientation field at initial state (upper panels) and at t/τ0=150 (lower panels); 
panels in bottom two rows: phase-field at initial state (upper panels) and at 
t/τ0=150 (lower panels); three different initial settings (a)~(c) are examined. 
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Figure 4. 7 Non-isothermal polycrystalline phase-field simulation; upper panels: phase-
field at different stages; lower panels: orientation field at different stages; 

randomly allocated 50 solid seeds grow and form grain boundaries. 
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Figure 4. 8 Initial evolution of orientation field (left panels) and phase-field (right panels) 
for (a) high and (b) low orientation mismatch; upper panels: initial conditions; 

lower panels: after 60000 steps. 
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Figure 4. 9 Mechanical boundary condition of polycrystalline phase-field simulation with 
deformation by tensile loading. 

 

Figure 4. 10 Simulation results by phase-field polycrystalline model with MPM 
deformation analysis for (a) high and (b) low orientation mismatch; forced 
displacement is imposed such that grains are pulled apart to right and left; 

upper panels: at 0% tension; lower panels: at 15% tension. 

(a) (b)
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Figure 4. 11 Initial evolution of phase-field (left panels) and orientation field (right 
panels) of multiple globular grains for four different states. 

 

Figure 4. 12 Mechanical boundary condition of the MPM analysis imposed on the 
evolving multiple globular solids. 
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Figure 4. 13 Multiple globular growth under shear loading; left panels: von Mises stress; 
right panels: equivalent plastic strain at 0% shear (upper panels), at 10% shear 
(panels in the second row), at 20% shear (panels in the third row), and at 40% 

shear; contours are overlaid on material points. 
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Figure 4. 14 Close-up images of material points; a rectangular domain presented in the 
upper panel is magnified; contours of equivalent plastic strain is overlaid on 
the material points;  Images up to 15.0% shear deformation are presented; a 

solid grain moves leftward due to imposed displacement. 
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Figure 4. 15 Comparisons of phase-field contours with (left panels) and without (right 
panels) shear deformation at 0% (upper panels), at 10% (panels in the second 

row), at 20% (panels in the third row), and at 40% (lower panels). 

 

Figure 4. 16 Comparisons of crystallographic orientation contours with (left panels) and 
without (right panels) shear deformation at 0% (upper panels), at 10% (panels 

in the second row), at 20% (panels in the third row), and at 40% (lower 
panels). 
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Figure 4. 17 Comparisons of computed ϕ=0 contours of growing multiple globular with 
(thick red line) and without (black line) shear deformation at 20% (upper 

panel) and 40% shear (lower panel). 

 

Figure 4. 18 Initial stage of free dendrite growth; Three solid seeds are initially placed on 
the bottom wall, and their orientations are aligned with coordinate axes, i.e. 
α=0, (upper panel); The seeds evolves until tips of the dendrites reach to the 

upper wall (middle and lower panels). 
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Figure 4. 19 Mechanical boundary condition of the MPM analysis for evolving dendrites 
under shear; displacement is imposed through upper and lower boundaries 

such that dendrites are sheared. 
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Figure 4. 20 Dendrite growth with thermal noise (ε=0.08 and Δ=0.8) under shear; left 
panels: von Mises stress; right panels: equivalent plastic strain at 0% shear 
(upper panels), at 15% shear (middle panels), and 30% shear (lower panels) 

. 

 

Figure 4. 21 Dendrite growth with thermal noise (ε=0.08 and Δ=0.8) under shear; Left 
panels: phase-field; Right panels: orientation field at 0% shear (upper panels), 

at 15% shear (middle panels), and 30% shear (lower panels) 
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Figure 4. 22 Dendrite growth with thermal noise (ε=0.08 and Δ=0.8) under shear; left 
panels: von Mises stress; right panels: equivalent plastic strain at 0% shear 

(upper panels), 15% shear (middle panels), 30% shear (lower panels); cooling 
term in heat equation (4.1.12) is activated when solid deformation reaches 

12% shear 

 

Figure 4. 23 Dendrite growth with thermal noise (ε=0.08 and Δ=0.8) under shear; left 
panels: phase-field; right panels: orientation field at 0% shear (upper panels), 

15% shear (middle panels), and 30% shear (lower panels); cooling term in 
heat equation (4.1.12) is activated when solid deformation reaches 12% shear. 
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Figure 4. 24 Contour of equivalent plastic strain at 30% shear same as presented in Figure 
4. 23 with the different range. 

 

Figure 4. 25 Phase-field contours at 15% and 30% shear that are same figures presented 
in Figure 4.23 in the range of 0.95≤ϕ≤1.0. 
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Figure 4. 26 Boundary conditions of MPM structural analysis; symmetric condition is 
assumed on left and bottom boundary;  
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Figure 4. 27 Dendrite growth with thermal noise (ε=0.08 and Δ=0.8) under compression 
loading; upper panels: Mises stress; panels in the second row: equivalent 

plastic strain; panels in the third row: phase-field; lower panels: 
crystallographic orientation at 0% compression (left panels), 5 % (panels in 

the second column), 10% (panels in the third column), and 20% compression. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

5.1 Conclusions 

Understanding of mechanical behavior of the evolving microstructure under 

applied external loads is important for a further understanding of the formation of defects 

such as hot tears and micro-pores.  The primary objective of this thesis is to develop a 

promising numerical framework for modeling dendritic solidification with a deforming 

solid structure while addressing micro-scale physics.  The novelty of this thesis is that the 

numerical simulation is based on the scale of evolving microstructure.  The utilization of 

both Lagrangian and Eulerian approaches is the main feature of the numerical strategy. 

The phase-field simulation of solidification based on Eulerian approach makes the 

treatment of interface dynamics easier, and the extension of the model to the 

polycrystalline phase-field model allows the user to consider complex interdendritic 

phenomena.  The material point method which is based on both Lagrangian and Eulerian 

descriptions is coupled with the phase-field model to simulate large solid elasto-

viscoplastic deformation without the mesh collapse which is generally found in 

Lagrangian FEM.  Through coupling, the changes in the crystallographic orientation of 

the evolving crystals due to applied deformation are accounted for.  The examples 

presented in this thesis demonstrate the feasibility and capability of the numerical 

framework. 

5.2 Recommendations for Future Work 

The following aspects are recommendations for future work. 

 Although the fluid flow of the liquid melt is not of interest in this thesis, the flow as a 

result of solid-liquid interaction should affect on the characteristics of solidification 

mainly through convection (solid deformation due to fluid flow is assumed to be 
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small [77-78]).  For instance, fluid flow would be induced by the grain motion 

observed in the example 1 of chapter 4. The leftward motion of the grain might 

produce rightward flow on the upper side of the grain, i.e. Figure 4.14, and the flow 

will enhance heat transfer and thus solidification around the portion.  Isolated 

liquid/gas pores will be formed earlier in this case than they would be in the case 

without fluid flow.  The numerical methodology by Sun et al. [79] should be feasible.  

In the method, the velocities of solid and liquid phases are independently defined, 

and a matching of both velocities based on asymptotic analysis is performed within 

the diffuse interface.  The developed methodology of field variable extension would 

be applicable to it. 

 Contacts among the solid grains in the MPM are approximately introduced through 

common background cells.  In the actual situation, more complicated phenomena, i.e. 

frictional contact or relative sliding between crystals, might be observed.  For a more 

correct treatment of the contacts, the contact, sliding and separation model [53] 

would be available.  However, the determination of mechanical properties associated 

with friction due to the contact is another challenging issue. 

 Although the constitutive models used in this thesis is isotropic, so-called crystal 

plasticity should be observed within the deformed single crystal is in the scale of 

micro- range [86].  Since a constitutive relationship has to reflect the glide of 

dislocation etc. within the crystal, it should be anisotropic.  Introduction of 

anisotropic mechanical response to the MPM would be possible [62]. 

 Excess energy associated with elastic strain energy and dissipation energy due to 

plastic deformation are not considered in this thesis for the simplicity of  

computation, but they should affect the morphological change of the deforming solid 

structure somehow, i.e. a change in the timing of bridging among crystals.  The 

above energy terms would be incorporated by reference to the model developed by 

Uehara et al. [22]. 
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 Simulations reported in this thesis were limited to two-dimensional applications.  

Extension of the methodology to three dimensional applications should be relatively 

easy in terms of both the three-dimensional phase-field polycrystalline model [82] 

and the three dimensional material point method [83].  However, the computational 

cost will be drastically increased.  The parallel computing technique and the adaptive 

grid approach (i.e. [84] and [85]) should also be investigated to overcome the 

difficulty. 
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APPENDIX A 

THE CIP METHOD 

The CIP method [42] introduced as an advection scheme in this thesis is briefly 

described in this section. 

A.1 Solution Methodology of the CIP Method 

The simplest form of a hyperbolic type equation for one-dimensional case is 

represented by the following advection equation. 

 0









x

f
u

t

f
 (A.1.1) 

where f  is an arbitrary variable and u is the advection velocity.  When the 

constant velocity is assumed within the whole computational domain, the equation 

represents a simple translation of f with the constant velocity u.   

A brief numerical procedure of the CIP method is the followings.  An initial 

profile (solid line in Figure A. 1(a)) travels to a new location (dashed line in Figure A. 1 

(a)) after given time step Δt.  Although an exact solution (dashed line in Figure A. 1 (a)) 

is represented by a continuous expression, f on discrete nodal points represented by black 

dots in Figure A. 1 (b) is the only information available in the actual numerical 

computation.  A profile of f among nodal points needs to be computed in the simulation, 

for instance, to obtain ∂f/∂x at a certain nodal point.  For that purpose, a certain profile 

should be assumed based on the discrete data points.  One possible choice is a use of the 

first order upwind scheme, and the scheme gives a polygonal line profile among the data 

points.  The resulting profile is totally different from an exact solution.  This is the main 

cause of numerical diffusion during the computation.  In order to reduce the error, both a 

variable f and its spatial derivative ∂f/∂x are stored on each nodal point, and used to 

construct the better profile among nodes as shown in Figure A. 1 (c).  This is the main 

strategy of CIP method. 



www.manaraa.com

149 
 

 

1
4
9
 

The information of ∂f/∂x is also advected with the advection velocity which is not 

necessarily constant.  By taking derivative of eq.(A.1.1) with respect to x, the following 

equation is obtained. 

 
x

u
f

x

f
u

t

f














'

''
 (A.1.2) 

where xff  /' .  The fractional step approach is applied to solve eq.(A.1.2) in 

the CIP method.  Same as mentioned in section 2.3, the equation is separated into 

“advection phase” and “non-advection phase” . 

 0
''











x

f
u

t

f
 (A.1.3) 

 
x

u
f

t

f









'

'
 (A.1.4) 

By solving eq.(A.1.3) and (A.1.4) sequentially, solutions of  f’ which is advected 

by the advection velocity is computed. 

A.2 The CIP Method for 1-D Case 

For 1-D case, eq.(A.1.1), (A.1.3) and (A.1.4) are equations to be solved.  

Advection equations eq.(A.1.1) and (A.1.3) are solved by semi-Lagrangian way in the 

CIP method.  First, the following cubic Hermite interpolation is formed with f  and 

 nn xff  /  on node i and its upwind node iup at time step n. 

   n

i

n

iiii fXfXbXaxF  '23
 (A.2.1) 

where ixxX   is a distance between arbitrary location x and node i.  Since four 

variables n

iup

n

i

n

iup

n

i ffff  ,,,  are available, coefficients ai and bi can be determined by the 

following continuity conditions on the upwind node iup. 

 

 
  n

iupiupi

n

iupiupi

fxF

fxF

'' 


 (A.2.2) 
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Then, ai and bi are 

 

 

 
sgn

''23
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2''

2

32

i
x

ff

x

ff
b

i
x

ff

x

ff
a

iupiiiup

i
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i





















 (A.2.3) 

In the above eq.(A.2.3), the following definitions are used. 

  









01

01
sgn

u for     

u for     
u  (A.2.4) 
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iiup xxx

iiiup

ui







sgn

sgnsgn

 (A.2.5) 

Although u is a function of both x and t, the advection velocity u is assumed to be 

constant during time increment ∆t when ∆t is small enough.  This is the major assumption 

of the CIP method.  Under the assumption, the following relationships are available. 

 
     

     tuxFttuxfttxff

tuxFttuxfttxff

iiii

iii

n
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



',',''

,,

*

1

 (A.2.6) 

Updated values of if and if   on node i are determined as values at upwind point 

on the profile of the previous time step.  If the distance between node i and the upwind 

node is defined by tu , eq.(A.2.1), (A.2.3) and (A.2.6) give the following 

equations. 

 
 

  iiiii

iiiii

n

i

cbatuxFf

dcbatuxFf









23'' 2*

231

 (A.2.7) 

Through the above process, solutions of eq.(A.1.1) and eq.(A.1.3) are computed. 

After updated variables in (A.2.7) are obtained, non-advection phase is calculated 

based on eq.(A.1.4) with the explicit Euler scheme for the time derivative and the central 
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difference scheme for the spatial derivative.  Finally, values of updated variables 1n

if  

and 1n
if   are obtained. 

 
x

uu
f

t
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
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

2
'

'' 11*

*1

 (A.2.8) 

A.3 The CIP Method for 2-D Case 

A two-dimensional advection equation is solved by the following way.  The 

equation to be solved is 

 0














y

f
v

x

f
u

t

f
 (A.3.1) 

where the external advection velocity field is denoted by  vuuext ,


.  By taking 

derivative of eq.(A.3.1) with respect to x and y, the following equations for the spatial 

derivatives of f are given. 
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 (A.3.2) 

where xffx  /  and yff y  / .  The fractional step approach is applied to 

the equations. 

[Advection phase] 
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 (A.3.3) 

[Non-advection phase] 
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 (A.3.4) 

In order to solve the advection phase eq.(A.3.1) and (A.3.3), a time increment ∆t  

is assumed to be negligibly small, which is the same assumption made in the one-

dimensional case.  This assumption gives 

    ttvytuxfttyxf ,,,,   (A.3.5) 

The following cubic interpolation is formed with nodal values f and their 

gradients fx and fy. 

   
 


3

0

3

0

,
l m

ml

lm YXCyxF  (A.3.6) 

where X=x-xi and Y=y-yj are distances between an arbitrary location (x, y) and 

node (i, j) on the Cartesian coordinate system.  For 2-D, four nodal points (i, j), (iup, j), (i, 

jup), and (iup, jup) are available where iup and jup represent upwind nodal points in x 

and y direction, respectively.  Eq.(A.3.6) is formed with 12 known variables on the above 

four nodal points (f,fx,fy)x4.  Several choices of coefficients lmC  are possible. 

 Type A interpolation [42] is used.  The function has a simple form. 
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 (A.3.7) 

where yffxff yx  /,/  . 

Ten coefficients need to be determined in this interpolation.  Continuities of f, fx, 

fy on (i, j), (iup, j), (i, jup) and a continuity of f on (iup, jup) are used for that purpose.  

The continuity conditions give the following equations. 
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 (A.3.8) 

iup, jup, 
iupx , and 

iupy  are defined by 
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Resulting coefficients are obtained as follows with the above notations. 
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Where A=fij-fijup-fijup+fiupjup is defined.  The following updated variables are 

obtained with notations ξ=-uΔt and η=-vΔt. 
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Based on the above procedure, eq.(A.3.1) and (A.3.3) are solved.  In addition, 

non-advection phase eq.(A.3.4) needs to be calculated to have spatial derivatives of f.  

The explicit Euler in time and the central difference in space are applied to the 

discretisation. 
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 (A.3.13) 

After the above calculation, updated variables of f, fx, fy  at time level n+1 are 

finally obtained. 

The continuity condition at (iup,jup) only satisfies about f not fx and fy.  An 

accuracy of the type A interpolation around (iup,jup) might be issue.  In order to improve 

the accuracy, type B interpolation is proposed [80] and it introduces continuity conditions 

of fx and fy at the point (iup,jup).  As pointed out by Yabe et al. [81], an order of accuracy 

of type B interpolation is almost same as type A interpolation.  A validation in section 

2.3.1.1 proves the fact, thus its applicability to our study should be sufficient. 
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A.4 Level-Set Method with the CIP Method 

A governing equation of the level set method presented in the main chapter is 

given by 

     
222
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In order to solve the equation by the CIP method, the equation is transformed as 

follows. 
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The transformed equation can be divided into “non-advection phase” and 

“advection phase”. 
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The fractional step method is applied to solve the equations.  The explicit Euler in 

time and the central difference in space are used as the solution methodology of “non-

advection phase”.  “Advection phase” is computed by the CIP method.  The equations are 

solved until it reaches to the steady state with the convergence criterion. 
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Figure A. 1 The principle of CIP method 

 

(a) Advected Profile (b) Only nodal values (c) Nodal values with gradients
ix 1ix1ix
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APPENDIX B 

NUMERICAL IMPLIMENTATION OF THE MATERIAL POINT 

METHOD 

A detailed derivation of a governing equation of the material point method 

(MPM) and several notes on numerical implementations of the method are presented in 

this section.  The generalized material point method (GIMP) is of interest. 

B.1 Derivation of Nodal Equation of Motion 

 A weak form of the equation of motion eq.(2.5.1) is written by 

   
ddSdd

dt

vd solid wbwτwσw  :



 (B.1.1) 

The equation is valid in continuum field whereas material properties and 

historical variables are stored on discrete material points.  A mapping relation between 

material points and continuum field is required for the further computation. 

B.1.1 Relation between variables on material points and 

continuum field 

Any variable fp defined on a material point is defined as a volume average of the 

variable on continuum field f(x,t).  
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Taking summation of the equation for all material points reside the domain Ω 

gives the following relation. 
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B.1.2 Nodal equation of motion 

By using eq.(B.1.3), each term in eq.(B.1.1) can be represented by the following 

equations. 
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Ωp is again a support domain of each material point.  Then, eq.(B.1.1) is rewritten by the 

following. 
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A weighting function δw needs to be specified to solve the equation.  The choice 

of function is arbitrary, so a linear shape function Ni(x) used in the usual FEM is typically 

selected in the MPM. 
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w  (B.1.6) 

where nnod is the total number of nodes in the domain Ω.  δwi is only defined on 

nodal points, so its special gradient would be zero.  That gives 
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δw, w , and ppp Vm /  are now substituted into eq.(B.1.5).  The first term is 

transformed by the following calculation process. 
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The second term is calculated by 
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The third and fourth terms can be given by 
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By putting four terms all together, the following form is obtained for eq.(B.1.5). 
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The equation must be satisfied for arbitrary weighting function δw.  Then, the 

nodal equation of motion is obtained to be the following form. 
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A particle characteristic function is defined such that the function has unity within 

lpxlp support domain where lp is a side length of each material point as shown in Figure B. 

1.  Throughout this thesis, the material point is assumed to have a rectangular shape. 

B.2 Stress Integration Algorithm 

A stress increment needs to be computed based on eq.(2.2.7) with appropriate 

inelastic constitutive relation at every single time step.  The radial return mapping method 
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[39] is applied in this thesis, and the numerical procedure is briefly presented in this 

section. 

First, some useful expressions are derived.  Eq.(2.2.7) is decomposed into the 

bulk and deviatoric component of stresses with elastic constitutive relation given by 

eq.(2.2.9). 
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K and G are related to E and ν by the following equations. 
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1 is the second-order identity tensor, and e
e
 is the elastic part of the deviatoric 

strain defined by 

 1
3

e

kke

ij

e

ije


   (B.2.3) 

The deviatoric stress is only related to the deviatoric strain, and given by 

 e

ijij eGs  2  (B.2.4) 

B.2.1 Elasto-perfectly-plasticity model 

The numerical procedure of elasto-perfectly-plasticity model based on Mises 

yielding criterion with the associative flow is briefly described in this subsection. 

B.2.1.1 The radial return mapping algorithm 

(1) Elastic predictor 

Assume all variables at time level n are already known, and incremental strain 

Δεn+1 
at time level n+1is given.  As a trial stress state, 

tr

n 1σ  is computed by assuming that 

Δεn+1 is composed of only elastic part.  Trial stresses and strains are obtained by the 

following equations.  
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 (B.2.5) 

  

(2) Examine yield criterion  

Von Mises yield criterion eq.(2.2.11) is examined with the trial stress 
tr

n 1s .  The 

following scenarios are expected. 

(2-a)   01 

tr

nYf s  

In this case, the trial state is the final state of stress and strain.  Stress and strain 

are updated by 
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(B.2.6) 

Then, the stress integration procedure at time level n+1 is completed. 

 

(2-b)   01 

tr

nYf s  

In this case, the states of stress and strain need to be corrected.  Since plastic 

strain would be evolved, eq.(2.2.7) is written by the following form. 

 









dt

d

dt

d

dt

d p
εε

C
σ

0 :  (B.2.7) 

The associative flow law represented by eq.(2.2.12) and eq.(B.2.4) are substitute 

into eq.(B.2.7), then the following equations are obtained. 
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Since G and dλ are scalars, the relation of tr

nn 11 //  ss  is easily expected from 

eq.(B.2.9).  Now the following unit tensor is defined. 
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Taking tensor contraction of eq.(B.2.9) with 
1nn  gives 
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Mises criterion gives the following relation under the plastic loading. 
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Plastic multiplier dλ is determined by eq.(B.2.11) and (B.2.12) as 
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The deviatoric stress sn+1 is updated such that 
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Using eq (B.2.14), a Cauchy stress and a plastic strain are also updated by 
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(3) Repeat procedure (1)-(2) 

 

Since no iteration process is required in the algorithm, the method is efficient in 

terms of the numerical implementation and the computational time. 
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B.2.1.2 Hydrostatic stress in plain strain condition 

As a side note, a derivation of hydrostatic stress in plane strain condition is briefly 

described in this subsection.  It is trivial, but the derivation is omitted in the most 

textbook.   Thus, it should be worth mentioning. 

In the plane strain condition, ζ33=ν(ζ11+ζ22) is satisfied.  The hydrostatic stress is 

defined to be 
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33 component of the plastic strain 

pd 33
 
will be zero in the plane strain condition, 

so the associative flow rule gives the following relation. 
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Since (ζ11+ζ22), dλ, and s are not always zero, ν=0.5 is the required condition to 

satisfy eq.(B.2.17).  The condition of ν=0.5 is substituted into eq.(B.2.16), then it gives 
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 (B.2.18) 

Plastic deformation is generally said to be incompressible.  This is because ν=0.5 

is the essential condition if we assume the associative flow rule and plane strain condition. 

B.2.2 Elasto-visco-plasticity model 

A Perzyna type model [40] is used for the elasto-visco-perfectly plasticity model 

in this thesis.  The radial return mapping method [39] is adopted as the stress integration 

algorithm.  The numerical procedure of the stress integration is briefly described in the 

following subsection. 

B.2.2.1 The radial return mapping algorithm 

(1) Elastic predictor 
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Assume all variables at time level n are already known, and incremental strain 

Δεn+1 
at time level n+1is given.  As a trial stress state, 

tr

n 1σ  is computed by assuming that 

Δεn+1 is composed of only elastic part.  Trial stresses and strains are obtained by the 

following equations. 
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Where ε
vp

 denotes visco-plastic strain tensor.   

(2) Examine the loading function 

The loading function represented by eq.(2.2.13) is examined with the trial stress

tr

n 1s .  The following scenarios are expected. 

(2-a)   01 

tr

nYf s  

In this case, the trial state is the final state of stress and strain.  Stress and strain 

are updated by 
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(B.2.20) 

Stress integration procedure at time level n+1 is completed. 

(2-b)   01 

tr

nYf s  

In this case, the states of stress and strain need to be corrected.  Since viscoplastic 

strain would be evolved, eq.(2.2.7) is written by the following form. 
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Using backward-Euler scheme, the associative flow rule represented by 

eq.(2.2.14) with a consistency parameter defined by eq.(2.2.15) is descretized as 
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Discrete form of eq.(B.2.21) is represented by 
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From eq.(B.2.22), the visco-plastic strain ε
vp

 is only composed of the deviatoric 

part (nn+1 is given by the deviatoric part of the stress).  Therefore, the visco-plastic strain 

develops the deviatoric part of the stress. 
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Same as eq.(B.2.9), tr

nn 11 //  ss  
and 

11 //  nn ns  
are expected from this equation.  

By taking tensor contraction of eq.(B.2.24) with  nn+1, it gives 
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Unlike the plasticity model, the state of fn+1>0 is allowed in the Perzyna type 

model.  In order to compute new stress state,  fn+1 needs to be determined.  The loading 

function eq.(2.2.13) is transformed by the following way. 
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The above equations give the following relation between fn+1 and fn+1
tr
.   
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sn+1 is calculated by eq.(B.2.24) as 
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New states of stress and visco-plastic strain are updated to be 
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(3) Repeat procedure (1)-(2) 

From eq.(B.2.28), the unit of ηvisc is [Pa.s] in international system of units (SI).  

The following relaxation time ηvisc is often defined for the convenience. 
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(B.2.30) 

Using the introduced parameter ηvisc, eq.(B.2.28) is rewritten by 
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(B.2.31) 

ηvisc=0 recovers rate-independent plasticity model presented in the preceding 

section. 

B.3 Weighted Shape Function and its Gradient for 2-D 

Two-dimensional expressions of weighted shape function and its gradient of 

defined in the GIMP are presented for the purpose of the numerical implementation. 

The general expression of the two-dimensional particle characteristic function of 

the GIMP is written by the following form 

  


 


otherwise               

yx  for            
tyx

p

p
0

,1
,,  (B.3.1) 

Since a rectangular area shown in Figure B. 1 is assumed to be the support 

domain of each material point, eq.(B.3.1) is represented by the combination of one-

dimensional particle characteristic function. 
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      tytxtyx ppp ,,,,    (B.3.2) 

The two-dimensional nodal shape function is also written by the combination of 

one-dimensional shape function defined by eq.(2.5.18). 

      yNxNyxN jiij ,  (B.3.3) 

Using eq.(B.3.2) and (B.3.3), the two-dimensional weighted shape function 

 
ppvp yxS ,  is represented by the following equation. 

 

     

       

       

   ySxS

dyyN
l

dxxN
l

dyxyNxN
l

dyxyxN
V

yxS

vpvp

pj

p

pi

p

ppji

p

pij

p

vp

pp

p

p

































11

1

,,
1

,

2  (B.3.4) 

The gradient of the weighted shape function  ppvp yxS , is given by  
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Each component of eq.(B.3.5) is calculated from eq.(B.3.4) as 
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 (B.3.6) 

Derivatives of the weighted shape function with respect to x and y are calculated 

by the following way. 
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 (B.3.7) 

Eq.(B.3.4) and (B.3.7) are the specific forms of the two-dimensional weighted 

shape function and its gradient, and implemented in this thesis. 

B.4 Dimensionless Equations of the MPM 

In the actual computation, a phase-field equation, heat equation, and 

crystallographic orientation equation are non-dimensionalized by a relaxation time η and 

an interface thickness W.  In order to keep a consistency with those equations, 

dimensionless equations of the MPM analysis are constructed in this section. 

For simplicity, let us consider the equation of motion eq.(2.2.5) without body 

force term. 
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 (B.4.1) 

Constitutive relation is given by 
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
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 ijijkkij

E







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211
 (B.4.2) 

Same as the phase-field equation, a relaxation time η and an interface thickness W 

are taken to be a time scale and a length scale, respectively.  In addition to those scales, a 

scale for mass should be required.  ρ=ρs=ρl is assumed in the phase-field equation, so ρs is 
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used for the mass scaling.  Using those scales, the following dimensionless variables are 

defined. 

 
*** ,, Wxxtts    (B.4.3) 

Eq.(B.4.1) is non-dimensionlized with those scales as 
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where dimensionless stress is defined by 
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ij

ij   (B.4.5) 

Same scaling of stress as eq.(B.4.5) is performed on eq.(B.4.2). 
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21/1 22
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 (B.4.6) 

From the equation, Young’s modulus and yield stress has to be scaled by ρsW
2
/η

2
.  

Pure material is of the major interest in this thesis.  For instance, a capillary length 

d=2.4x10
-10

[m], a solid density ρs=2550[kg/m3], and a thermal diffusivity D=3.7x10
-

5
[m

2
/s] are the typical values for pure aluminum [61].  From the parameter determination 

procedure of phase-field equation mentioned in chapter 2, W=1.3x10
-9

[m] and η=1.36x10
-

13
[s] are obtained if d/W=0.185 is chosen.  This gives the dimensionless Young’s 

modulus E
*
=E/(ρsW

2
/η

2
)=0.317 for a typical value of E=70.6[GPa] at the room 

temperature.  As already mentioned in chapter 2, the CFL condition has to be satisfied 

during the MPM analysis.  Based on the above non-dimensionalization, a speed of sound 

within a solid body is transformed to the following with using eq.(2.5.21). 
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Using the above usual properties for pure aluminum, a dimensionless value 

K
*
+4G

*
/3=0.497 and ρ

*
=1 are obtained.  In the actual computation, Δx/W=0.4 is basically 

used.  This gives the CFL condition as 

 57.0



solidc

x
t  (B.4.8) 

For a stable computation, Δt
*
=Δt/η=0.01 is used in this thesis. 

In case of compression analysis, H=800Δy is initially assigned as the height of the 

computational domain, and Δy /W0=0.4 is also set.  From the above material property for 

pure aluminum, Δy=5.19 x10
-10

[m] and H=4.15 x10
-7

[m] are the order of spatial length 

scales.  η0=1.36x10
-13

[s] is also estimated from the above.  Basically, wall displacement 

Δuy=1.0 x10
-4
Δy [m/step]=1.25 x10

-7
 [1/step] is applied in the computation, and time 

increment Δt=0.01η0  is used.  Thus, dε/dt=1.0x10
8
[1/sec] is the order of strain rate in this 

computation.  In the work by Fuloria et al.[13], FEM deformation analysis of dendrite 

structure is performed under dε/dt=0.1[1/sec].   

B.5 Determination of Constitutive Behavior 

B.5.1 Mechanical properties of metal at high temperature 

In this thesis, a deformation analysis of solidifying dendritic structure at high 

temperature is of the great interest.  Mechanical properties around melting point of the 

material should be appropriate for the analysis.  As stated in the main chapter, metal at 

high temperature range behaves as visco-plastic material.  In some research, 

phenomenologically determined constitutive model is applied to those kinds of material.  

For instance, Pokorny et al.[58] apply Cocks yielding criterion with associative flow rule.  

In their study, the dynamic yield stress is specified by 
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where ζ0 and ε0=ζ0/E are a reference stress and a reference strain.  n is a 

hardening coefficient, ]/1[10 5

0 s  is a temperature-dependent reference strain rate 

(due to a lack of available data, the value is arbitrarily defined), and m is the strain-rate-

sensitivity coefficient.  Mechanical properties used in the above model are estimated 

from available data [63].  The data indicates that Young’s modulus at eutectic 

temperature is about 50GPa.  The value is used for simulations in the main chapter.  As 

also mentioned in [58], Poisson’s ratio is almost independent of temperature, so a typical 

value 0.33 is used in this thesis.  A static (reference) yield stress ζ0 varies with 

temperature.  For example, Figure B. 4 plots stress-strain curves of copper single crystal 

for different temperature with constant strain rate ]/1[105 4 s .  Since a melting 

point of pure copper is about 1357[K], a static yield stress is the order of few MPa around 

the melting point.  A static yield stress data in [58] also shows that its order is of few 

MPa.  5MPa defined in chapter 3 is reasonable value from those viewpoints. 

 

B.5.2 Parameter determination of a Perzyna type visco-

plasticity model 

For elasto-perfectly-plasticity material model, Young’s modulus, Poisson’s ratio, 

and yield stress are material parameters should be determined.  In addition to them, 

viscosity parameter or relaxation time should be specified for elasto-visco-plasticity 

material model.  In chapter 2 and appendix B.2, Perzyna type model is introduced to 

consider the elasto-perfectly-visco-plasticity of the material behavior for its simplicity 

and applicability to large strain rate.  However, its expression in eq.(2.2.12) and (2.2.13) 

is little bit complicated to obtain physical perspective of the model, i.e. a shape of stress-

strain curve.  In this subsection, a characteristic of the Perzyna type model for one-
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dimensional uniaxial loading case and determination of model parameters are presented.  

Detailed derivations of equations are omitted (see [60]for details about derivations ). 

An evolution of visco-plastic strain in a general Perzyna type model is described 

by the following equation. 

  
ij

Y
Y

vp

ij

f
f







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(B.5.2) 

Here Φ(fY) is defined as a function of a static yielding function fY which is 

assumed to be independent of strain.  For metallic material, it is typical to use von Mises 

yield criterion for the static yielding function.  The form of fY  in this thesis is 

 
YijijY ssf 

3

2
: 

 

(B.5.3) 

In case of one-dimensional uni-axial loading, eq.(B.5.3) should be given by 

  YYf  
3

2

 

(B.5.4) 

where ζ is an uni-axial stress.  Strain should be composed of elastic part and 

visco-plastic part of strain. 
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(B.5.5) 

In the Perzyna type model, for example, the following form of Φ is assumed. 

    mYY  

 

(B.5.6) 

Eq.(B.5.2) with eq.(B.5.6) is now turned out to be 
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(B.5.7) 

or 

  mY

vp    (B.5.8) 

The equation indicates that stress can exceed the static yield stress (overstress) 

depending on visco-plastic strain rate.  The dependency is adjusted by parameters γ and m.   
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Since a development of a specific constitutive relation is not of interest in this thesis, Φ is 

defined the same as the static yielding function, i.e. m=1, for its simplicity of numerical 

implementation (the actual implementation is already developed in appendix B.2). 
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
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vp

Y


  (B.5.9) 

Although a development of a constitutive relation is not a subject of this study, 

plausible material behavior should be incorporated at least.  Generally, strain rate and 

temperature dependent flow stress ζ (dynamic yield stress) is described as the following 

empirical equation (see i.e. [66]). 
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Q
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where Q is an activation energy for plastic flow, R(=8.314J/(g.mol.K)) is an 

universal gas constant, and f denotes some empirically obtained function (stress-strain 

curve).  Therefore, a function f depends on Arrhenius type term.  At constant temperature, 

the following phenomenologically defined constitutive relation is often used. 

 mnC    (B.5.11) 

where C, n and m are empirical parameters.  When the imposed temperature to 

some metallic material is above their re-crystallization temperature (approximately one-

half of absolute melting temperature), work-hardening effect and thermal softening effect 

is balanced on each other, so flow stress is saturated.  In the case, the following empirical 

constitutive relation is often used. 

 

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


 

T

b
mC n expsinh 1    (B.5.12) 

C and m are constants, and b=Q/R defined in the above.  Often  TbZ /exp  is 

called Zener-Hollomon parameter.  When the value in the parenthesis is sufficiently 

small, the above equation is reduced to eq.(B.5.11).  In any case, there is non-linear 

dependency of dynamic yield stress on strain rate.  Thus, some approximation should be 
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required to represent those constitutive relation by eq.(B.5.9).  Figure B. 5 plots stress-

strain curves with different strain rate up to ~10
7
[1/sec] for (a) polycrystalline aluminum 

and (b) high purity iron (99.99%Fe) [67].  Left panels are original graphs of the source 

[67], and they are plotted with logarithmic horizontal axis.  Right panels are reproduced 

plots from the original graphs (left panels in the same figure) with normal horizontal axis.  

Basically, flow stress increases rapidly in the lower strain rate, so fitting data with 

eq.(B.5.9) in this regime is not suitable, i.e. γ~10
-9

[1/(Pa.s)] (flow stress should be 

overestimated in the high strain rate).  As a first approximation, a linear  interpolation in 

high strain rate shown in the right panels is assumed in this thesis.  From the fitting, 

model parameter γ in eq.(B.5.9) is 0.034[1/(Pa.s)] and 0.024[1/(Pa.s)] for aluminum and 

iron, respectively.  The order of γ~10
-2

 [1/(Pa.s)] is assumed in this thesis.  In other words, 

ηvisc ~10
2
 [Pa.s] is used.  From eq.(B.2.30), i.e. ηvisc=ηvisc/2G, a relaxation time that it takes 

material mechanical response to decay to a static yield stress is the order of  ηvisc~10
-

7
[sec] if the order of Young’s modulus is several tens of GPa.  It is sufficient to keep 

viscous effect during a whole computational time. 

 As a side note, for a structure which is composed of multiple grains, grain 

boundary strengthening or Hall-Petch strengthening is observed in the sense of 

macroscopic continuum mechanics. 

 2/1

0

 kd  (B.5.13) 

where ζ0 is the reference yield stress, k is a constant, and d is a size of grain.  The 

equation indicates that smaller grains give more resistance to cause yielding (basically 

shear or sliding).  A simulation model used in this thesis resolves a scale of 

microstructure, so the effect should be automatically included thorough contacts among 

grains approximately. 
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B.6 Specific Representation of Some Terms for an Actual 

Implementation 

As a note for an actual numerical implementation, a detailed form of some terms 

is presented. 

B.6.1 The velocity gradient vSvp


   

The velocity gradient term vSvp




 
is necessary to compute strain increment 

through a rate of deformation tensor.  The term is represented by dyads.  In the two-

dimensional case, the term should be represented by the following form. 
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where nodal velocity  iii vuv ,


 is defined in this notation.  With using the 

notation, a rate of deformation tensor at each material point should be given by 
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 (B.5.2) 

B.6.2 Spin tensor ω 

In order to correct the effect of rigid body rotation on stress tensor, Jaumann 

stress rate is used in our computation.  In the expression, a spin tensor at each material 

point should be necessary.  Using eq.(B.3.8), the following form should be obtained. 
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Using the expression, σp·ωp and ωp·σp should be given by the following equations. 
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Then, (ωp·σ-σp·ωp)  term is represented by the following equation. 
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B.6.3 Nodal internal force int

if


 

If the following matrix notation of point stress is defined, 

 









pyypxy

pxypxx

p 
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σ  (B.6.7) 

Nodal internal force should be represented by 
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B.6.4 Deformation gradient 

Deformation gradient F denotes a mapping relation between reference (initial) 

and current configuration, and is used to update a volume associated with each material 

point in this thesis.  A rate change of F is represented by the following equation. 

 F
x

vF
F 






dt

d  (B.6.9) 

where ∂v/∂x is the velocity gradient tensor defined in the current configuration.  

The following equation can be derived for the discretized form of eq.(B.6.9) if the 

explicit Euler method is applied. 
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Using the notation of a rate of deformation tensor in eq.(B.6.1), the equation 

should be represented by 
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B.7 Fragmentation 

Although it is not included in the main chapter, a fragmentation should take place 

around contact surface and bridging part etc., and might affect morphological change of 

dendrite structure somehow as Flemings [2] points out.  As well as a contact phenomenon 
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and a modification of solid structural model, a numerical implementation of a 

fragmentation of the solid structure is relatively easy by MPM.  For instance, Ionescu et 

al.[62] set maximum tensile strain and shear strain as a criterion of the failure of the 

composite material.  Since all historical variables are carried by each material point, the 

criterion is just imposed on each material point, i.e. stresses on a material point set to be 

zero if strains on the point exceed the maximum value. 

As a simple test study, a tensile loading problem with dumbbell type specimen 

shown in Figure B. 2 is solved. The maximum equivalent (total) strain is set to be a 

criterion of fragment.  An equivalent Mises strain is chosen for the strain measure and is 

defined by the following equation. 

 
     

 222

222

3
2

zxyzxy

xxzzzzyyyyxx

eq 


 


  (B.8.1) 

Same as the benchmark test described in section 2, a dumbbell shape test 

specimen is computationally created.  Material properties of usual aluminum is assigned 

to it (E=69[GPa], ν=0.345, ζY=15[MPa], and ρ=2700[kg/m
3
]) as a test study.  Although it 

is a macroscopic value, typical breaking elongation of the material 30% is set to be a 

fragmentation criterion.  Displacement boundary condition is imposed on both edges of 

the specimen.  The displacement is increased linearly with time.  Material properties of 

usual aluminum are assigned to the specimen.  From some time step, a necking is formed 

in the middle of the specimen, and gradually stress is concentrated in the part.   
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Figure B. 1 Schematic of volume associated with material point 

 

 

Figure B. 2 Allocation of material points for dumbbell type specimen model 
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Figure B. 3 Contours of total strain (left two panels) and von Mises stress (right panels) 
for (a) without imposing fragment criterion and (b) with fragment criterion. 

0 2.0 0 1.4E7

(a)

(b)
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Figure B. 4 Stress-strain curves of copper single crystal as a function of temperature with 
dε/dt=5x10

-4
[s

-1
]; The plots are reproduced from the source indicated below. 

Source: Bauser M. et al. Extrusion second edition.2006,ASM international. 
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Figure B. 5 Strain rate dependency of dynamic yielding stress; (a) for polycrystalline 
aluminum; (b) for high purity iron (Fe 99.99%); Left panels: original plots of 

the source indicated below with logarithmic horizontal axis; Right panels: 
reproduced plots with normal horizontal axis. Approximated linear profiles 

are also presented. 

 Source: Klopp R.W. et al. Mech.Mater. 1985,4, 375-385. 

 

 

 

(a)

(b)
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APPENDIX C 

NUMERICAL IMPLIMENTATION OF POLYCRYSTALLINE PHASE-

FIELD MODEL 

Evolution equations for phase-field ϕ and crystallographic orientation α are 

presented in chapter 4.  Some topics required for an actual numerical implementation are 

presented in this appendix. 

C.1 Determination of Model Parameters 

Model parameters η, s and εϕ need to be specified in eq.(4.1.8) and (4.1.9).  

Basically, εϕ and η relate to a grain boundary thickness of ϕ and α (a thickness which ϕ or 

α is allowed to vary), respectively.  s affects on a phase-field ϕ  at the center of the grain 

boundary.  Plausible way to define the parameters needs to be constructed.  Warren et al. 

[24] suggest the following guideline to determine the parameters. 

(i) Assume typical value of latent heat per unit volume for metallic material as 

 ]/[102 39 mJL   (C.1.1) 

The relation between a depth of double-well a and the above latent heat L is also 

assumed to be 

 2/La   (C.1.2) 

(ii) A characteristic length of grain boundary thickness is defined to be 

 L/*    (C.1.3) 

As a plausible value of η
*
, η

*
 =1.0x10

-9
[m] is chosen. 

(iii) Assume the following relation between and εϕ and η. 

 
~875.1~   (C.1.4) 

(iv) Choose the following relation between s and η. 

 ~25.1~ s  (C.1.5) 
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The above model parameters have dimension.  Dimensionless model parameters 


~ , ~ , and s~  are obtained as follows with using a characteristic length l0 and a reference 

energy density E0 are used. 

 
00

~

lE





   (C.1.6) 

 
00

~

lE


   (C.1.7) 

 
00

~

lE

s
s   (C.1.8) 

In the parameter determination by Warren et al.[24], E0=2a
2
 is used.  With 

considering the similarity of KWC phase-field model with the phase-field model 

developed by Karma et al.[19] (see next section for more details), E0=a
2
/2 and l0=W0 are 

suitable choice for the non-dimensionalization. 

C.2 Comparison of Polycrystalline Phase-field Model with 

the Phase-field Model of Single Dendritic Solidification 

Developed by Karma et al. 

A phase-field model developed by Karma described in chapter 2 would be better 

to recover a simulation result obtained by sharp interface model.  In this section, a 

similarity between the model and KWC phase-field model is examined.  0  (no 

angle mismatch) is assumed throughout this section.   

A phenomenological bulk free energy (dimensionless) by Karma et al.[19] is 

   





 
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53

2

42
,

5
3

42
*

Kf  (C.2.1) 

The one by Warren et al.[24] with type I function for p(ϕ) is 

   



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Laa
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8422
,




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
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


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
  (C.2.2) 
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As mentioned previously, a constant a has a dimension of [energy density]
1/2

, and 

2/La   is assumed for the parameter determination.  Dimensionless eq.(C.2.2) by a
2
/4 

should be given by 

   
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L
f
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*  (C.2.3) 

The variations of eq.(C.2.1) and (C.2.3) with respect to ϕ should be given by 
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 222
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In the research by Warren et al. [24], eq.(C.2.5) for isothermal case is simplified 

as 

     









222
2*

1
2

1
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 CafW  (C.2.6) 

A constant C is defined for the computation.  The form is quite similar to 

eq.(C.2.4), but is for isothermal case.  Temperature dependency on double-well potential 

in KWC phase-field model is introduced by the following form. 

     
















  'tan
2

1
2

2

112
2*









 afW  (C.2.7) 

where θ’=(T-Tm)/Tm is dimensionless temperature which is different definition 

from the one used in this thesis.  κ1 and κ2 are positive constants.  The coefficient κ1 is set 

to be κ1<1 [18].  Since –π/2≤tan
-1

x≤π/2, minima of eq.(C.2.7) always stay within -1≤ϕ≤1 

by defining the function.  Although slight differences exist between eq.(C.2.4) and 

(C.2.7), a basic characteristic of both equations is almost same , i.e. tan
-1

(κ2θ’) is almost 

linear with respect to θ around T=Tm.  In this thesis, the form in eq.(C.2.1) is used for a 
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bulk free energy density f in a crystalline phase-field model in order to recover solutions 

by sharp interface model at least an absence of orientation mismatch. 

Resulting phase-field equation by Warren et al. [24] should be the following form. 
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E0=a
2
/2 would be the suitable choice of reference energy density.  Non-

dimensionalization of eq.(C.2.8) with E0 should be given by 

 
   

    22

2

11222

'1'12

'tan
2

1''










 














 

s

t  (C.2.9) 

where τ’ϕ=τϕ/(a
2
/2),  ε’ϕ=εϕ/(a

2
/2)

1/2
, s’=s/(a

2
/4), and η’=η/(a

2
/2)

1/2
.  By assuming 

τ’ϕ=τ0 and εϕ
2
=W0

2
, the following dimensionless equation (non-dimensionalized by τ0 and 

W0, i.e. t’=t/τ0, x’=x/W0) should be obtained. 
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From the similarity of eq.(C.2.10) with the phase-field equation developed by 

Karma et al.[19], the following evolution equations are used in this thesis. 
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where t’=t/τϕ , x’=x/W0, and τ’α=τα/τϕ are defined.  A coefficient P should be 

dimensionless, so a coefficient μ has the same unit as η.   modified to P’ as 
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   






'~'~

~

~
1'~'


 eeP  (C.2.13) 

 00/~ lE   would be a suitable nondimensinalization. For a heat equation, its 

expression is the same for both models.  No modification for it should be required.  From 

the above non-dimensionalization, the following relation among model parameters should 

be obtained. 

 875.1/~~
   (C.2.14) 

 5.1/~2~
s  (C.2.15) 

From the parameters, a critical orientation mismatch should be 06.1 c . 

Again, the model parameter determination is based on the guideline proposed by 

Warren et al.[24] and there is not a significant meaning on it. 

 C.2.1 Adding anisotropy 

As represented by eq.(4.1.4), four-fold symmetry is introduced to phase-field 

equation to represent anisotropy.  Since the anisotropy has to be included basing on 

crystal framework, cosine is computed with an angle of (φ-α).  The treatment is 

completely same as the one developed in chapter 2.4.3.  The same way of numerical 

implementation about the anisotropy term is simply applied to KWC phase-field model. 

C.2.2 Validation: single dendrite growth with different 

orientation 

As mentioned in the above, a polycrystalline phase-field model used in this study 

should have the same solutions obtained by a sharp interface model in case of no 

orientation mismatch.  Test simulation is performed to confirm it in this section.  A 

computational domain which is composed of 801x801 computational grids is prepared.  

Spacing of the grids is set to be Δx/W0=0.4.  A flux free boundary condition is imposed 

for phase-field, temperature, and orientation evolution equation.  At the center of the 
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domain, a solid seed (ϕ=1 and θ=0 are imposed inside the seed.  Otherwise, ϕ=-1 and θ=-

0.55 is assigned) is allocated.  ε=0.05, d0/W0=0.185, and D=3.0 are defined as model 

parameters.  For one test case, α=0 is set all over the domain.  For another case, α=π/4 is 

specified in the whole domain.  In both cases,   is not expected in any region 

throughout the simulations. 

Figure C. 3 upper panels show computed ϕ=0 contours at every 2500 steps for 

α=0 (left panel) and α=π/4 (right panel).  In both cases, dendrite grows its main arms to 

the given orientation direction.  Lower left panel of the same figure plots computed ϕ=0 

contours of both conditions (the result of α=π/4 is rotated back for the comparison).  Both 

contours correspond well with each other.  A time history of tip velocity is shown in the 

lower right panel of the same figure.  Tip velocities for both conditions are the same, and 

give the close value to the analytical one.  Thus, the polycrystalline model developed in 

this thesis gives an exact solution at least when an orientation mismatch is absent.   

C.3 Treatment of Singular Term in KWC Phase-field 

Model 

KWC phase-field model includes a singular term, i.e.   / .  Since the term is 

inside of the divergence, /1  is assumed to be a diffusion coefficient.  This means that 

infinitely large diffusion would be expected near 0 .  The term is necessary to 

keep α constant within each bulk grain, and to allow α to diffuse within grain boundary.  

However, some numerical cares need to handle it in an actual numerical implementation.  

Kobayashi et al.[68] introduce the following cut-off inverse function Iy. 

  














 lim

limlim

/1for  
1

/10for  
1









yI  (C.3.1) 

As shown in Figure C. 1, above some large value γlim, an original function /1  

is cut off.  An evolution equation of orientation field is solved by using the above cut-off 
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function with γlim=10
8
 in this thesis.  γlim=10

8
 is actually still large value in the actual 

computation.  Since a diffusion coefficient strongly affects on an acceptable time 

increment for a stable analysis of explicit time stepping method, the size of the time 

increment becomes very much small and unrealistic for an actual computation.  In order 

to remove the restriction of the size of the time increment, SOR (Successive Over 

Relaxation) method which is an implicit method is adopted in this thesis. 

C.4 Numerical Treatment of the Periodicity of the Angle 

Variable 

Crystallographic orientation α appears in KWC phase-field model is defined as an 

angle between a direction of a crystal framework and x-axis fixed on the computational 

domain.  α has an unit of angle, i.e. radian, and it has 2π periodicity.  In the evolution 

equations of ϕ and α, the value α itself does not play a role, but the spatial variation of α 

does.  Therefore, the difference of α among neighbor computational nodes as well as α 

itself should be kept in the range of 2π in the actual numerical computation.  Otherwise, 

the computational result would be meaningless.  A numerical treatment to keep α or its 

spatial difference Δα in the range of 2π is simple, and it is briefly described in the 

followings. 

In this thesis, α and Δα is kept in the range of -π<α≤π.  The following cases are 

considered. 

(i) In case α>π 

Define the following integer Iαmod. 

 






 







2
intmodI  (C.4.1) 

where a function “int” returns a quotient of inside the parenthesis.  Then the 

corrected angle variable αcorr is represented by 

  12 mod   Icorr  (C.4.2) 
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(ii) In caseα≤π 

Define the following integer Iαmod. 

 






 







2
intmodI  (C.4.3) 

Then the corrected angle variable αcorr is represented by 

  12 mod   Icorr  (C.4.4) 

In the above procedure, a notation of α is only presented, but the procedure also 

works with its spatial difference Δα. 

C.5 Validation of One-Dimensional Dry Boundary 

In order to check a validity of a numerical program of KWC phase-field model in 

this thesis, one-dimensional dry boundary problem is chosen [24] since an analytical 

solution is available for it.  Dry boundary here means that only solid phase is a stable 

phase in the system with using single-well potential, i.e. 

    21
8

1
 f  (C.5.1) 

In this problem, evolution equations are nondimensionalized by the depth of the 

potential well, i.e. a coefficient “a”, and the system is isothermal.  η=0 is assumed to 

compare the numerical result with its analytical solution.  Then the evolution equations in 

one-dimensional case are 

  
dx

d
s

dx

d

t








  




121

2

2
2  (C.5.2) 

    


















dxd

dxd

dx

d
s

t /

/
11

22







  (C.5.3) 

Steady solution of the above two equations is calculated by setting L.H.S. of the 

equations to be zero, and imposing the following Dirichlet boundary conditions. 
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 

 
3

1










 (C.5.4) 

Without going to details (see [24] for more details), the analytical solution is 

given by 

 

 
 

 





























x

x
x

x
x

0for  

0for  

exp
2

1
1 0












 (C.5.5) 

where ϕ0=ϕ(0), and it is represented by 

 













s
,

1

1
0  (C.5.6) 

Since basically εϕ determines a diffuse interface thickness of ϕ, phase-field value 

at the center of the grain boundary, i.e. at x=0, depends on a parameter s and orientation 

mismatch Δα.  This is because 0  reduces rate change of ϕ from eq.(C.5.2). 

Now transient numerical simulation of eq.(C.5.2) and (C.5.3) is performed.  Same 

parameter settings as Warren et al.[24] are used as s=1.0, εϕ=0.01, γ=10
3
, τϕ=1.0, and 

τα=0.1.  Calculation domain is defined in -0.5≤x≤0.5, and it is discretized by 100 

computational grids.  Δt=1.0x10
-4

 is defined, and the simulation is performed up to 10000 

computational time steps.  As shown in Figure C. 2, a numerical solution (solid line) 

corresponds well with an analytical solution given by eq.(C.5.5) for both phase-field and 

orientation field. 

As a side note, if an explicit time stepping scheme is used to solve eq.(C.5.2) and 

(C.5.3), time increment has to be less than Δt=1.0x10
-10

 to obtain stable solution for this 

problem.  That is not suitable to perform two-dimensional polycrystalline phase-field 

simulation. 
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C.6 Example: Multi Grain Growth with Thermal Noise 

An introduction of thermal noise would be suitable to obtain more complex grain 

structure.  Although an effect of the thermal noise is not mentioned in the paper [24], the 

term is introduced to perform a simulation of multiple grain growth by KWC phase-field 

model in this section.  The simulation is for the check purpose of an availability of the 

noise term in the model. 

Initially, 20 solid seeds are randomly allocated within a computational domain 

whose size is 2401x2401.  Orientations are also assigned randomly to the seeds such that 

the value stays in the range of –π/4≤α≤π/4.  Δx/W0=0.4, D=3.0, d0/W0=0.185, ε=0.05, and 

Δ=0.55 are set as the operating conditions.  Fu=1.0x10
-3

 is used as a strength of the 

thermal noise.  Flux free boundary condition is imposed for phase-field, temperature, and 

orientation evolution equation.  A cooling term represented in eq.(4.1.12) is arbitrary set 

to be c=10 and θ0=-0.2, and the term is activated after t/τ0=550. 

As shown in Figure C. 4, multiple fluctuated dendrites evolve their structure, and 

impingements on each other take place after some time steps.  Since dendrites have 

complex interface structure, formed grain boundaries also represented by complicated 

jagged lines, i.e. panels at t/τ0=600~1000.  Once grain boundary is formed, diffusion 

process of orientation among impinging grains is observed.  Some grains rotate and 

match their orientation to that of their neighbor. 

From the above simulation result, thermal noise should be incorporated in the 

KWC phase-field model. 
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Figure C. 1 A schematic of cut-off inverse function; A dashed line represents an original 
function of /1  whereas a solid line plots the cut-off inverse function Iy; 

The original function is cut off at a sufficiently large value γlim. 

 

Figure C. 2 Line profiles of phase-field (left panel) and orientation field (right panel) of 
one-dimensional dry boundary validation problem; Solid and dashed line 

represent a numerical solution and an analytical solution, respectively. 
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Figure C. 3 Time evolution of ϕ=0 contours at every 2500 steps for α=0 (upper left panel) 
and α=π/4 (upper right panel); Lower left panel: comparison of ϕ=0 contours 

of α=0 and α=π/4 at 25000 steps; lower right panel: a time history of 
dimensionless tip velocity. 
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Figure C. 4 Multiple grain growth simulation with thermal noise by polycrystalline 
phase-field model; Upper panels: phase-field; Lower panels: crystallographic 

orientation; 20 seeds are randomly allocated, and orientation is assigned to 
them randomly at initial state. 
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